BeieliScale/Arduino/beescale_lora_mcci/beescale_lora_mcci.ino

673 lines
17 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
beescale_lora_mcci.ino
BeieliScale, see https://mini-beieli.ch
Joerg Lehmann, nbit Informatik GmbH
*/
#include <Catena.h>
#include <Catena_Led.h>
#include <Catena_TxBuffer.h>
#include <Catena_CommandStream.h>
#include <Catena_Mx25v8035f.h>
#include <Wire.h>
#include <Adafruit_BME280.h>
#include <Arduino_LoRaWAN.h>
#include <lmic.h>
#include <hal/hal.h>
#include <mcciadk_baselib.h>
#include <cmath>
#include <type_traits>
#include <HX711.h>
using namespace McciCatena;
/****************************************************************************\
|
| MANIFEST CONSTANTS & TYPEDEFS
|
\****************************************************************************/
/* how long do we wait between transmissions? (in seconds) */
enum {
// set this to interval between transmissions, in seconds
// Actual time will be a little longer because have to
// add measurement and broadcast time, but we attempt
// to compensate for the gross effects below.
CATCFG_T_CYCLE = 6 * 60, // every 6 minutes
CATCFG_T_CYCLE_TEST = 30, // every 10 seconds
};
/* additional timing parameters; ususually you don't change these. */
enum {
CATCFG_T_WARMUP = 1,
CATCFG_T_SETTLE = 5,
CATCFG_T_OVERHEAD = (CATCFG_T_WARMUP + CATCFG_T_SETTLE),
};
constexpr uint32_t CATCFG_GetInterval(uint32_t tCycle)
{
return (tCycle < CATCFG_T_OVERHEAD)
? CATCFG_T_OVERHEAD
: tCycle - CATCFG_T_OVERHEAD
;
}
enum {
CATCFG_T_INTERVAL = CATCFG_GetInterval(CATCFG_T_CYCLE),
};
enum {
PIN_ONE_WIRE = A2, // XSDA1 == A2
PIN_SHT10_CLK = 8, // XSCL0 == D8
PIN_SHT10_DATA = 12, // XSDA0 == D12
};
// forwards
static void settleDoneCb(osjob_t *pSendJob);
static void warmupDoneCb(osjob_t *pSendJob);
static void txFailedDoneCb(osjob_t *pSendJob);
static void sleepDoneCb(osjob_t *pSendJob);
static Arduino_LoRaWAN::SendBufferCbFn sendBufferDoneCb;
/****************************************************************************\
|
| READ-ONLY DATA
|
\****************************************************************************/
static const char sVersion[] = "0.1";
static const byte MAX_VALUES_TO_SEND = 4;
static const uint8_t LORA_DATA_VERSION = 1;
/****************************************************************************\
|
| VARIABLES
|
\****************************************************************************/
typedef struct {
uint8_t version; // Versionierung des Paketformats
uint8_t vbat; // Batteriespannung (1 Einheit => 20 mV)
uint8_t humidity; // Luftfeuchtigkeit in Zehntels-Prozent
uint8_t pressure; // Luftdruck in XXXX
uint8_t reading_offset[MAX_VALUES_TO_SEND]; // Zeit der Messung in Sekunden, erster Wert ist 0
int16_t weight_raw1[MAX_VALUES_TO_SEND]; // Reading (raw) der ersten Waegzelle
int16_t weight_raw2[MAX_VALUES_TO_SEND]; // Reading (raw) der zweiten Waegzelle
int16_t temperature[MAX_VALUES_TO_SEND]; // Temperatur in 1/10 Grad Celsius
} LORA_data;
// Global Variables
LORA_data lora_data;
// generic timer
long t_cur;
// the primary object
Catena gCatena;
//
// the LoRaWAN backhaul. Note that we use the
// Catena version so it can provide hardware-specific
// information to the base class.
//
Catena::LoRaWAN gLoRaWAN;
//
// the LED
//
StatusLed gLed (Catena::PIN_STATUS_LED);
// The temperature/humidity sensor
Adafruit_BME280 gBME280; // The default initalizer creates an I2C connection
bool fBme;
SPIClass gSPI2(
Catena::PIN_SPI2_MOSI,
Catena::PIN_SPI2_MISO,
Catena::PIN_SPI2_SCK
);
// The flash
Catena_Mx25v8035f gFlash;
bool fFlash;
// Scales
HX711 LoadCell_1;
HX711 LoadCell_2;
// USB power
bool fUsbPower;
// have we printed the sleep info?
bool g_fPrintedSleeping = false;
// the job that's used to synchronize us with the LMIC code
static osjob_t sensorJob;
void sensorJob_cb(osjob_t *pJob);
void setup(void)
{
gCatena.begin();
lora_data.version = LORA_DATA_VERSION;
setup_platform();
setup_bme280();
setup_scales();
setup_flash();
setup_uplink();
}
void setup_platform(void)
{
#ifdef USBCON
// if running unattended, don't wait for USB connect.
if (! (gCatena.GetOperatingFlags() &
static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fUnattended)))
{
while (!Serial)
/* wait for USB attach */
yield();
}
#endif
gCatena.SafePrintf("\n");
gCatena.SafePrintf("-------------------------------------------------------------------------------\n");
gCatena.SafePrintf("BeieliScale Version %s.\n", sVersion);
{
char sRegion[16];
gCatena.SafePrintf("Target network: %s / %s\n",
gLoRaWAN.GetNetworkName(),
gLoRaWAN.GetRegionString(sRegion, sizeof(sRegion))
);
}
gCatena.SafePrintf("Enter 'help' for a list of commands.\n");
#ifdef CATENA_CFG_SYSCLK
gCatena.SafePrintf("SYSCLK: %d MHz\n", CATENA_CFG_SYSCLK);
#endif
#ifdef USBCON
gCatena.SafePrintf("USB enabled\n");
#else
gCatena.SafePrintf("USB disabled\n");
#endif
Catena::UniqueID_string_t CpuIDstring;
gCatena.SafePrintf(
"CPU Unique ID: %s\n",
gCatena.GetUniqueIDstring(&CpuIDstring)
);
gCatena.SafePrintf("--------------------------------------------------------------------------------\n");
gCatena.SafePrintf("\n");
// set up the LED
gLed.begin();
gCatena.registerObject(&gLed);
gLed.Set(LedPattern::FastFlash);
// set up LoRaWAN
gCatena.SafePrintf("LoRaWAN init: ");
if (!gLoRaWAN.begin(&gCatena))
{
gCatena.SafePrintf("failed\n");
}
else
{
gCatena.SafePrintf("succeeded\n");
}
gCatena.registerObject(&gLoRaWAN);
/* find the platform */
const Catena::EUI64_buffer_t *pSysEUI = gCatena.GetSysEUI();
uint32_t flags;
const CATENA_PLATFORM * const pPlatform = gCatena.GetPlatform();
if (pPlatform)
{
gCatena.SafePrintf("EUI64: ");
for (unsigned i = 0; i < sizeof(pSysEUI->b); ++i)
{
gCatena.SafePrintf("%s%02x", i == 0 ? "" : "-", pSysEUI->b[i]);
}
gCatena.SafePrintf("\n");
flags = gCatena.GetPlatformFlags();
gCatena.SafePrintf(
"Platform Flags: %#010x\n",
flags
);
gCatena.SafePrintf(
"Operating Flags: %#010x\n",
gCatena.GetOperatingFlags()
);
}
else
{
gCatena.SafePrintf("**** no platform, check provisioning ****\n");
flags = 0;
}
}
void setup_bme280(void)
{
if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep))
{
fBme = true;
}
else
{
fBme = false;
gCatena.SafePrintf("No BME280 found: check wiring\n");
}
}
void setup_scales(void)
{
gCatena.SafePrintf("Setup Scales...\n");
// Initialize library with data output pin, clock input pin and gain factor.
// Channel selection is made by passing the appropriate gain:
// - With a gain factor of 64 or 128, channel A is selected
// - With a gain factor of 32, channel B is selected
// By omitting the gain factor parameter, the library
// default "128" (Channel A) is used here.
LoadCell_1.begin(A3, A2);
LoadCell_2.begin(A1, A0);
gCatena.SafePrintf("Setup Scales is complete\n");
}
void setup_flash(void)
{
if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS))
{
fFlash = true;
gFlash.powerDown();
gCatena.SafePrintf("FLASH found, put power down\n");
}
else
{
fFlash = false;
gFlash.end();
gSPI2.end();
gCatena.SafePrintf("No FLASH found: check hardware\n");
}
}
void setup_uplink(void)
{
/* trigger a join by sending the first packet */
if (!(gCatena.GetOperatingFlags() &
static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest)))
{
if (! gLoRaWAN.IsProvisioned())
gCatena.SafePrintf("LoRaWAN not provisioned yet. Use the commands to set it up.\n");
else
{
gLed.Set(LedPattern::Joining);
/* warm up the BME280 by discarding a measurement */
if (fBme)
(void)gBME280.readTemperature();
/* trigger a join by sending the first packet */
startSendingUplink();
}
}
}
// The Arduino loop routine -- in our case, we just drive the other loops.
// If we try to do too much, we can break the LMIC radio. So the work is
// done by outcalls scheduled from the LMIC os loop.
void loop()
{
gCatena.poll();
/* for mfg test, don't tx, just fill -- this causes output to Serial */
if (gCatena.GetOperatingFlags() &
static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest))
{
TxBuffer_t b;
fillBuffer(b);
delay(1000);
}
}
void ReadSensors()
{
// vBat
float vBat = gCatena.ReadVbat();
gCatena.SafePrintf("vBat: %d mV\n", (int) (vBat * 1000.0f));
lora_data.vbat = (vBat * 1000 / 20);
// vBus
float vBus = gCatena.ReadVbus();
gCatena.SafePrintf("vBus: %d mV\n", (int) (vBus * 1000.0f));
fUsbPower = (vBus > 3.0) ? true : false;
if (fBme)
{
Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity();
// temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C
// pressure is 2 bytes, hPa * 10.
// humidity is one byte, where 0 == 0/256 and 0xFF == 255/256.
gCatena.SafePrintf(
"BME280: T: %d P: %d RH: %d\n",
(int) m.Temperature,
(int) m.Pressure,
(int) m.Humidity
);
lora_data.temperature[0] = m.Temperature;
lora_data.humidity = m.Temperature;
lora_data.pressure = m.Pressure;
}
gCatena.SafePrintf("Before Read Scales\n");
if (LoadCell_1.wait_ready_timeout(1000))
{
long w1 = LoadCell_1.read_average(5);
gCatena.SafePrintf("Load_cell 1 output val: %ld\n", w1);
}
else {
Serial.println("HX711 LoadCell_1 not found.");
}
if (LoadCell_2.wait_ready_timeout(1000))
{
long w2 = LoadCell_2.read_average(5);
gCatena.SafePrintf("Load_cell 2 output val: %ld\n", w2);
}
else {
Serial.println("HX711 LoadCell_2 not found.");
}
gCatena.SafePrintf("After Read Scales\n");
}
void fillBuffer(TxBuffer_t &b)
{
b.begin();
FlagsSensor2 flag;
flag = FlagsSensor2(0);
b.put(FormatSensor2); /* the flag for this record format */
uint8_t * const pFlag = b.getp();
b.put(0x00); /* will be set to the flags */
// vBat is sent as 5000 * v
float vBat = gCatena.ReadVbat();
gCatena.SafePrintf("vBat: %d mV\n", (int) (vBat * 1000.0f));
b.putV(vBat);
flag |= FlagsSensor2::FlagVbat;
// vBus is sent as 5000 * v
float vBus = gCatena.ReadVbus();
gCatena.SafePrintf("vBus: %d mV\n", (int) (vBus * 1000.0f));
fUsbPower = (vBus > 3.0) ? true : false;
uint32_t bootCount;
if (gCatena.getBootCount(bootCount))
{
b.putBootCountLsb(bootCount);
flag |= FlagsSensor2::FlagBoot;
}
if (fBme)
{
Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity();
// temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C
// pressure is 2 bytes, hPa * 10.
// humidity is one byte, where 0 == 0/256 and 0xFF == 255/256.
gCatena.SafePrintf(
"BME280: T: %d P: %d RH: %d\n",
(int) m.Temperature,
(int) m.Pressure,
(int) m.Humidity
);
b.putT(m.Temperature);
b.putP(m.Pressure);
b.putRH(m.Humidity);
flag |= FlagsSensor2::FlagTPH;
}
gCatena.SafePrintf("Before Read Scales\n");
if (LoadCell_1.wait_ready_timeout(1000))
{
long w1 = LoadCell_1.read_average(5);
gCatena.SafePrintf("Load_cell 1 output val: %ld\n", w1);
}
else {
Serial.println("HX711 LoadCell_1 not found.");
}
if (LoadCell_2.wait_ready_timeout(1000))
{
long w2 = LoadCell_2.read_average(5);
gCatena.SafePrintf("Load_cell 2 output val: %ld\n", w2);
}
else {
Serial.println("HX711 LoadCell_2 not found.");
}
gCatena.SafePrintf("After Read Scales\n");
*pFlag = uint8_t(flag);
}
void startSendingUplink(void)
{
TxBuffer_t b;
LedPattern savedLed = gLed.Set(LedPattern::Measuring);
fillBuffer(b);
if (savedLed != LedPattern::Joining)
gLed.Set(LedPattern::Sending);
else
gLed.Set(LedPattern::Joining);
bool fConfirmed = false;
if (gCatena.GetOperatingFlags() & (1 << 16))
{
gCatena.SafePrintf("requesting confirmed tx\n");
fConfirmed = true;
}
//gLoRaWAN.SendBuffer(b.getbase(), b.getn(), sendBufferDoneCb, NULL, fConfirmed);
gLoRaWAN.SendBuffer((uint8_t*) &lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed);
}
static void sendBufferDoneCb(
void *pContext,
bool fStatus
)
{
osjobcb_t pFn;
gLed.Set(LedPattern::Settling);
if (! fStatus)
{
gCatena.SafePrintf("send buffer failed\n");
pFn = txFailedDoneCb;
}
else
{
pFn = settleDoneCb;
}
os_setTimedCallback(
&sensorJob,
os_getTime()+sec2osticks(CATCFG_T_SETTLE),
pFn
);
}
static void txFailedDoneCb(
osjob_t *pSendJob
)
{
gCatena.SafePrintf("not provisioned, idling\n");
gLoRaWAN.Shutdown();
gLed.Set(LedPattern::NotProvisioned);
}
static void settleDoneCb(
osjob_t *pSendJob
)
{
const bool fDeepSleep = checkDeepSleep();
if (! g_fPrintedSleeping)
doSleepAlert(fDeepSleep);
if (fDeepSleep)
doDeepSleep(pSendJob);
else
doLightSleep(pSendJob);
}
bool checkDeepSleep(void)
{
bool const fDeepSleepTest = gCatena.GetOperatingFlags() & (1 << 19);
bool fDeepSleep;
if (fDeepSleepTest)
{
fDeepSleep = true;
}
#ifdef USBCON
else if (Serial.dtr())
{
fDeepSleep = false;
}
#endif
else if (gCatena.GetOperatingFlags() & (1 << 17))
{
fDeepSleep = false;
}
else if ((gCatena.GetOperatingFlags() &
static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fUnattended)) != 0)
{
fDeepSleep = true;
}
else
{
fDeepSleep = false;
}
return fDeepSleep;
}
void doSleepAlert(const bool fDeepSleep)
{
g_fPrintedSleeping = true;
if (fDeepSleep)
{
bool const fDeepSleepTest = gCatena.GetOperatingFlags() & (1 << 19);
const uint32_t deepSleepDelay = fDeepSleepTest ? 10 : 30;
gCatena.SafePrintf("using deep sleep in %u secs"
#ifdef USBCON
" (USB will disconnect while asleep)"
#endif
": ",
deepSleepDelay
);
// sleep and print
gLed.Set(LedPattern::TwoShort);
for (auto n = deepSleepDelay; n > 0; --n)
{
uint32_t tNow = millis();
while (uint32_t(millis() - tNow) < 1000)
{
gCatena.poll();
yield();
}
gCatena.SafePrintf(".");
}
gCatena.SafePrintf("\nStarting deep sleep.\n");
uint32_t tNow = millis();
while (uint32_t(millis() - tNow) < 100)
{
gCatena.poll();
yield();
}
}
else
gCatena.SafePrintf("using light sleep\n");
}
void doDeepSleep(osjob_t *pJob)
{
/* ok... now it's time for a deep sleep */
gLed.Set(LedPattern::Off);
Serial.end();
Wire.end();
SPI.end();
if (fFlash)
gSPI2.end();
gCatena.Sleep(CATCFG_T_INTERVAL);
/* and now... we're awake again. trigger another measurement */
Serial.begin();
Wire.begin();
SPI.begin();
if (fFlash)
gSPI2.begin();
sleepDoneCb(pJob);
}
void doLightSleep(osjob_t *pJob)
{
gLed.Set(LedPattern::Sleeping);
os_setTimedCallback(
pJob,
os_getTime() + sec2osticks(CATCFG_T_INTERVAL),
sleepDoneCb
);
}
static void sleepDoneCb(
osjob_t *pJob
)
{
gLed.Set(LedPattern::WarmingUp);
os_setTimedCallback(
&sensorJob,
os_getTime() + sec2osticks(CATCFG_T_WARMUP),
warmupDoneCb
);
}
static void warmupDoneCb(
osjob_t *pJob
)
{
startSendingUplink();
}