Initial commit
This commit is contained in:
commit
441356f0ab
|
|
@ -0,0 +1,5 @@
|
|||
# mini-beieli-node - Bienenstock Ueberwachung
|
||||
|
||||
Code fuer den LoraWAN Node
|
||||
|
||||
Autor: Joerg Lehmann, nbit Informatik GmbH
|
||||
|
|
@ -0,0 +1,988 @@
|
|||
/*
|
||||
|
||||
mini-beieli-node.ino
|
||||
|
||||
BeieliScale, see https://mini-beieli.ch
|
||||
|
||||
Joerg Lehmann, nbit Informatik GmbH
|
||||
|
||||
*/
|
||||
|
||||
#include <Catena.h>
|
||||
|
||||
#include <Catena_Led.h>
|
||||
#include <Catena_CommandStream.h>
|
||||
#include <Catena_Mx25v8035f.h>
|
||||
|
||||
#include <Wire.h>
|
||||
#include <Adafruit_BME280.h>
|
||||
#include <Arduino_LoRaWAN.h>
|
||||
#include <lmic.h>
|
||||
#include <hal/hal.h>
|
||||
#include <mcciadk_baselib.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
|
||||
#include <HX711.h>
|
||||
|
||||
using namespace McciCatena;
|
||||
|
||||
/****************************************************************************\
|
||||
|
|
||||
| MANIFEST CONSTANTS & TYPEDEFS
|
||||
|
|
||||
\****************************************************************************/
|
||||
|
||||
/* how long do we wait between transmissions? (in seconds) */
|
||||
enum {
|
||||
// set this to interval between transmissions, in seconds
|
||||
// Actual time will be a little longer because have to
|
||||
// add measurement and broadcast time, but we attempt
|
||||
// to compensate for the gross effects below.
|
||||
CATCFG_T_CYCLE = 6 * 60, // every 6 minutes
|
||||
CATCFG_T_CYCLE_TEST = 30, // every 10 seconds
|
||||
CATCFG_T_CYCLE_INITIAL = 30, // every 30 seconds initially
|
||||
CATCFG_INTERVAL_COUNT_INITIAL = 30, // repeat for 15 minutes
|
||||
};
|
||||
|
||||
/* additional timing parameters; ususually you don't change these. */
|
||||
enum {
|
||||
CATCFG_T_WARMUP = 1,
|
||||
CATCFG_T_SETTLE = 5,
|
||||
CATCFG_T_OVERHEAD = (CATCFG_T_WARMUP + CATCFG_T_SETTLE),
|
||||
CATCFG_T_MIN = CATCFG_T_OVERHEAD,
|
||||
CATCFG_T_MAX = CATCFG_T_CYCLE < 60 * 60 ? 60 * 60 : CATCFG_T_CYCLE, // normally one hour max.
|
||||
CATCFG_INTERVAL_COUNT = 30,
|
||||
};
|
||||
|
||||
constexpr uint32_t CATCFG_GetInterval(uint32_t tCycle)
|
||||
{
|
||||
return (tCycle < CATCFG_T_OVERHEAD)
|
||||
? CATCFG_T_OVERHEAD
|
||||
: tCycle - CATCFG_T_OVERHEAD;
|
||||
}
|
||||
|
||||
enum {
|
||||
CATCFG_T_INTERVAL = CATCFG_GetInterval(CATCFG_T_CYCLE),
|
||||
};
|
||||
|
||||
enum {
|
||||
PIN_ONE_WIRE = A2, // XSDA1 == A2
|
||||
PIN_SHT10_CLK = 8, // XSCL0 == D8
|
||||
PIN_SHT10_DATA = 12, // XSDA0 == D12
|
||||
};
|
||||
|
||||
// the cycle time to use
|
||||
unsigned gTxCycle;
|
||||
// remaining before we reset to default
|
||||
unsigned gTxCycleCount;
|
||||
|
||||
// forwards
|
||||
static void settleDoneCb(osjob_t* pSendJob);
|
||||
static void warmupDoneCb(osjob_t* pSendJob);
|
||||
static void txFailedDoneCb(osjob_t* pSendJob);
|
||||
static void sleepDoneCb(osjob_t* pSendJob);
|
||||
static Arduino_LoRaWAN::SendBufferCbFn sendBufferDoneCb;
|
||||
static Arduino_LoRaWAN::ReceivePortBufferCbFn receiveMessage;
|
||||
void setTxCycleTime(unsigned txCycle, unsigned txCount);
|
||||
|
||||
// Additional Commands
|
||||
// forward reference to the command function
|
||||
cCommandStream::CommandFn cmdHello;
|
||||
cCommandStream::CommandFn cmdGetCalibrationSettings;
|
||||
cCommandStream::CommandFn cmdGetSensorReadings;
|
||||
cCommandStream::CommandFn cmdGetScale1;
|
||||
cCommandStream::CommandFn cmdGetScale2;
|
||||
cCommandStream::CommandFn cmdCalibrateZeroScale1;
|
||||
cCommandStream::CommandFn cmdCalibrateZeroScale2;
|
||||
cCommandStream::CommandFn cmdCalibrateScale1;
|
||||
cCommandStream::CommandFn cmdCalibrateScale2;
|
||||
|
||||
// the individual commmands are put in this table
|
||||
static const cCommandStream::cEntry sMyExtraCommmands[] =
|
||||
{
|
||||
{ "hello", cmdHello },
|
||||
{ "get_calibration_settings", cmdGetCalibrationSettings },
|
||||
{ "get_sensor_readings", cmdGetSensorReadings },
|
||||
{ "calibrate_zero_scale1", cmdCalibrateZeroScale1 },
|
||||
{ "calibrate_zero_scale2", cmdCalibrateZeroScale2 },
|
||||
{ "calibrate_scale1", cmdCalibrateScale1 },
|
||||
{ "calibrate_scale2", cmdCalibrateScale2 },
|
||||
// other commands go here....
|
||||
};
|
||||
|
||||
/* a top-level structure wraps the above and connects to the system table */
|
||||
/* it optionally includes a "first word" so you can for sure avoid name clashes */
|
||||
static cCommandStream::cDispatch
|
||||
sMyExtraCommands_top(
|
||||
sMyExtraCommmands, /* this is the pointer to the table */
|
||||
sizeof(sMyExtraCommmands), /* this is the size of the table */
|
||||
"application" /* this is the "first word" for all the commands in this table*/
|
||||
);
|
||||
|
||||
|
||||
/****************************************************************************\
|
||||
|
|
||||
| READ-ONLY DATA
|
||||
|
|
||||
\****************************************************************************/
|
||||
|
||||
static const char sVersion[] = "0.1";
|
||||
static const byte MAX_VALUES_TO_SEND = 8;
|
||||
static const uint8_t LORA_DATA_VERSION = 1;
|
||||
static const uint8_t LORA_DATA_VERSION_FIRST_PACKAGE = 128;
|
||||
static const uint32_t PRESSURE_OFFSET = 825;
|
||||
|
||||
/****************************************************************************\
|
||||
|
|
||||
| VARIABLES
|
||||
|
|
||||
\****************************************************************************/
|
||||
|
||||
// must be 65 bytes long...
|
||||
typedef struct {
|
||||
long cal_w1_0; // 4 Bytes, Wert Waegezelle 1 ohne Gewicht
|
||||
long cal_w2_0; // 4 Bytes, Wert Waegezelle 2 ohne Gewicht
|
||||
float cal_w1_factor; // 4 Bytes,
|
||||
float cal_w2_factor;
|
||||
byte fill[123];
|
||||
} __attribute__((packed)) CONFIG_data;
|
||||
|
||||
typedef struct {
|
||||
uint8_t version; // Version
|
||||
uint8_t vbat; // Batteriespannung (0: <= 2510mV, 70: 3000mV, 170: 3700mV, 255: >= 4295mV [1 Einheit => 7mV])
|
||||
uint8_t humidity[MAX_VALUES_TO_SEND]; // Luftfeuchtigkeit in Prozent
|
||||
int16_t temperature; // Temperatur (Startwert) in 1/10 Grad Celsius
|
||||
int8_t temperature_change[MAX_VALUES_TO_SEND - 1]; // Unterschied Temperatur seit letztem Messwert in 1/10 Grad Celsius
|
||||
uint8_t pressure[MAX_VALUES_TO_SEND]; // Luftdruck in Hekto-Pascal (0 entspricht 825 hPa)
|
||||
uint16_t weight[MAX_VALUES_TO_SEND]; // Waegezelle Gesamtgewicht, in 5g
|
||||
uint8_t offset_last_reading; // Zeitunterschied letzte zu erste Messung (in Minuten)
|
||||
} __attribute__((packed)) LORA_data;
|
||||
|
||||
typedef struct {
|
||||
uint8_t version; // Version
|
||||
uint8_t vbat; // Batteriespannung (0: <= 2510mV, 70: 3000mV, 170: 3700mV, 255: >= 4295mV [1 Einheit => 7mV])
|
||||
uint8_t humidity; // Luftfeuchtigkeit in Prozent
|
||||
int16_t temperature; // Temperatur in 1/10 Grad Celsius
|
||||
uint8_t pressure; // Luftdruck in Hekto-Pascal (0 entspricht 825 hPa)
|
||||
int32_t weight1; // Waegezelle 1, Raw Value
|
||||
int32_t weight2; // Waegezelle 2, Raw Value
|
||||
uint16_t weight; // Waegezelle Gesamtgewicht, in 5g
|
||||
} __attribute__((packed)) LORA_data_first;
|
||||
|
||||
typedef struct {
|
||||
uint8_t vbat; // Batteriespannung (0: <= 2510mV, 70: 3000mV, 170: 3700mV, 255: >= 4295mV [1 Einheit => 7mV])
|
||||
uint8_t humidity; // Luftfeuchtigkeit in Prozent
|
||||
int16_t temperature; // Temperatur in 1/10 Grad Celsius
|
||||
uint8_t pressure; // Luftdruck in Hekto-Pascal (0 entspricht 825 hPa)
|
||||
int32_t weight1; // Waegezelle 1, Raw Value
|
||||
int32_t weight2; // Waegezelle 2, Raw Value
|
||||
uint16_t weight; // Waegezelle Gesamtgewicht, in 5g
|
||||
} SENSOR_data;
|
||||
|
||||
|
||||
byte my_position = 0; // what is our actual measurement, starts with 0
|
||||
long timer_pos0;
|
||||
|
||||
// Global Variables
|
||||
LORA_data lora_data;
|
||||
LORA_data_first lora_data_first;
|
||||
CONFIG_data config_data;
|
||||
SENSOR_data last_sensor_reading;
|
||||
|
||||
// generic timer
|
||||
long t_cur;
|
||||
|
||||
// the primary object
|
||||
Catena gCatena;
|
||||
|
||||
//
|
||||
// the LoRaWAN backhaul. Note that we use the
|
||||
// Catena version so it can provide hardware-specific
|
||||
// information to the base class.
|
||||
//
|
||||
Catena::LoRaWAN gLoRaWAN;
|
||||
|
||||
//
|
||||
// the LED
|
||||
//
|
||||
StatusLed gLed(Catena::PIN_STATUS_LED);
|
||||
|
||||
// The temperature/humidity sensor
|
||||
Adafruit_BME280 gBME280; // The default initalizer creates an I2C connection
|
||||
bool fBme;
|
||||
|
||||
SPIClass gSPI2(
|
||||
Catena::PIN_SPI2_MOSI,
|
||||
Catena::PIN_SPI2_MISO,
|
||||
Catena::PIN_SPI2_SCK);
|
||||
|
||||
// The flash
|
||||
Catena_Mx25v8035f gFlash;
|
||||
bool fFlash;
|
||||
|
||||
// Scales
|
||||
HX711 LoadCell_1;
|
||||
HX711 LoadCell_2;
|
||||
|
||||
// USB power
|
||||
bool fUsbPower;
|
||||
|
||||
// have we printed the sleep info?
|
||||
bool g_fPrintedSleeping = false;
|
||||
|
||||
// the job that's used to synchronize us with the LMIC code
|
||||
static osjob_t sensorJob;
|
||||
void sensorJob_cb(osjob_t* pJob);
|
||||
|
||||
void setup(void)
|
||||
{
|
||||
gCatena.begin();
|
||||
ClearLoraData();
|
||||
|
||||
// Use D10 to regulate power
|
||||
pinMode(D10, OUTPUT);
|
||||
|
||||
setup_platform();
|
||||
setup_bme280();
|
||||
//setup_scales();
|
||||
|
||||
/* for 4451, we need wider tolerances, it seems */
|
||||
#if defined(ARDUINO_ARCH_STM32)
|
||||
LMIC_setClockError(10 * 65536 / 100);
|
||||
#endif
|
||||
|
||||
setup_flash();
|
||||
setup_uplink();
|
||||
}
|
||||
|
||||
void setup_platform(void)
|
||||
{
|
||||
|
||||
/* add our application-specific commands */
|
||||
gCatena.addCommands(
|
||||
sMyExtraCommands_top,
|
||||
nullptr
|
||||
);
|
||||
|
||||
// read config_data from fram...
|
||||
gCatena.SafePrintf("Reading Calibration Config from FRAM...\n");
|
||||
gCatena.getFram()->getField(cFramStorage::kBme680Cal, (uint8_t *)&config_data, sizeof(config_data));
|
||||
|
||||
gCatena.SafePrintf("cal_w1_0: %d\n", config_data.cal_w1_0);
|
||||
gCatena.SafePrintf("cal_w2_0: %d\n", config_data.cal_w2_0);
|
||||
gCatena.SafePrintf("cal_w1_factor: %d.%03d\n", (int)config_data.cal_w1_factor, (int)(config_data.cal_w1_factor * 1000) % 1000);
|
||||
gCatena.SafePrintf("cal_w2_factor: %d.%03d\n", (int)config_data.cal_w2_factor, (int)(config_data.cal_w2_factor * 1000) % 1000);
|
||||
gCatena.SafePrintf("Size of config_data: %d\n", sizeof(config_data));
|
||||
|
||||
// im Moment statisch...
|
||||
//config_data.cal_w1_0 = 20000;
|
||||
//config_data.cal_w2_0 = 20000;
|
||||
//config_data.cal_w1_factor = 2.5;
|
||||
//config_data.cal_w2_factor = 2.5;
|
||||
|
||||
|
||||
// config_data speichern...
|
||||
//gCatena.SafePrintf("Writing Calibration Config to FRAM...\n");
|
||||
//gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
||||
|
||||
#ifdef USBCON
|
||||
// if running unattended, don't wait for USB connect.
|
||||
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fUnattended))) {
|
||||
while (!Serial)
|
||||
/* wait for USB attach */
|
||||
yield();
|
||||
}
|
||||
#endif
|
||||
|
||||
gCatena.SafePrintf("\n");
|
||||
gCatena.SafePrintf("-------------------------------------------------------------------------------\n");
|
||||
gCatena.SafePrintf("BeieliScale Version %s.\n", sVersion);
|
||||
{
|
||||
char sRegion[16];
|
||||
gCatena.SafePrintf("Target network: %s / %s\n",
|
||||
gLoRaWAN.GetNetworkName(),
|
||||
gLoRaWAN.GetRegionString(sRegion, sizeof(sRegion)));
|
||||
}
|
||||
gCatena.SafePrintf("Enter 'help' for a list of commands.\n");
|
||||
|
||||
#ifdef CATENA_CFG_SYSCLK
|
||||
gCatena.SafePrintf("SYSCLK: %d MHz\n", CATENA_CFG_SYSCLK);
|
||||
#endif
|
||||
|
||||
#ifdef USBCON
|
||||
gCatena.SafePrintf("USB enabled\n");
|
||||
#else
|
||||
gCatena.SafePrintf("USB disabled\n");
|
||||
#endif
|
||||
|
||||
Catena::UniqueID_string_t CpuIDstring;
|
||||
|
||||
gCatena.SafePrintf(
|
||||
"CPU Unique ID: %s\n",
|
||||
gCatena.GetUniqueIDstring(&CpuIDstring));
|
||||
|
||||
gCatena.SafePrintf("--------------------------------------------------------------------------------\n");
|
||||
gCatena.SafePrintf("\n");
|
||||
|
||||
// set up the LED
|
||||
gLed.begin();
|
||||
gCatena.registerObject(&gLed);
|
||||
gLed.Set(LedPattern::FastFlash);
|
||||
|
||||
// set up LoRaWAN
|
||||
gCatena.SafePrintf("LoRaWAN init: ");
|
||||
if (!gLoRaWAN.begin(&gCatena)) {
|
||||
gCatena.SafePrintf("failed\n");
|
||||
}
|
||||
else {
|
||||
gCatena.SafePrintf("succeeded\n");
|
||||
}
|
||||
|
||||
gLoRaWAN.SetReceiveBufferBufferCb(receiveMessage);
|
||||
setTxCycleTime(CATCFG_T_CYCLE_INITIAL, CATCFG_INTERVAL_COUNT_INITIAL);
|
||||
|
||||
gCatena.registerObject(&gLoRaWAN);
|
||||
|
||||
/* find the platform */
|
||||
const Catena::EUI64_buffer_t* pSysEUI = gCatena.GetSysEUI();
|
||||
|
||||
uint32_t flags;
|
||||
const CATENA_PLATFORM* const pPlatform = gCatena.GetPlatform();
|
||||
|
||||
if (pPlatform) {
|
||||
gCatena.SafePrintf("EUI64: ");
|
||||
for (unsigned i = 0; i < sizeof(pSysEUI->b); ++i) {
|
||||
gCatena.SafePrintf("%s%02x", i == 0 ? "" : "-", pSysEUI->b[i]);
|
||||
}
|
||||
gCatena.SafePrintf("\n");
|
||||
flags = gCatena.GetPlatformFlags();
|
||||
gCatena.SafePrintf(
|
||||
"Platform Flags: %#010x\n",
|
||||
flags);
|
||||
gCatena.SafePrintf(
|
||||
"Operating Flags: %#010x\n",
|
||||
gCatena.GetOperatingFlags());
|
||||
}
|
||||
else {
|
||||
gCatena.SafePrintf("**** no platform, check provisioning ****\n");
|
||||
flags = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void setup_bme280(void)
|
||||
{
|
||||
if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep)) {
|
||||
fBme = true;
|
||||
}
|
||||
else {
|
||||
fBme = false;
|
||||
gCatena.SafePrintf("No BME280 found: check wiring\n");
|
||||
}
|
||||
}
|
||||
|
||||
void setup_scales(void)
|
||||
{
|
||||
gCatena.SafePrintf("Setup Scales...\n");
|
||||
|
||||
// Enable Power
|
||||
digitalWrite(D10, HIGH);
|
||||
|
||||
// Initialize library with data output pin, clock input pin and gain factor.
|
||||
// Channel selection is made by passing the appropriate gain:
|
||||
// - With a gain factor of 64 or 128, channel A is selected
|
||||
// - With a gain factor of 32, channel B is selected
|
||||
// By omitting the gain factor parameter, the library
|
||||
// default "128" (Channel A) is used here.
|
||||
gCatena.SafePrintf("Setup Scale 1...\n");
|
||||
LoadCell_1.begin(A1, A0);
|
||||
|
||||
if (!(LoadCell_1.wait_ready_timeout(1000))) {
|
||||
gCatena.SafePrintf("Scale 1 not ready.\n");
|
||||
}
|
||||
|
||||
//LoadCell_1.power_down();
|
||||
|
||||
gCatena.SafePrintf("Setup Scale 2...\n");
|
||||
LoadCell_2.begin(D12, A2);
|
||||
|
||||
if (!(LoadCell_2.wait_ready_timeout(1000))) {
|
||||
gCatena.SafePrintf("Scale 2 not ready.\n");
|
||||
}
|
||||
|
||||
//LoadCell_2.power_down();
|
||||
|
||||
gCatena.SafePrintf("Setup Scales is complete\n");
|
||||
}
|
||||
|
||||
void setup_flash(void)
|
||||
{
|
||||
if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS)) {
|
||||
fFlash = true;
|
||||
gFlash.powerDown();
|
||||
gCatena.SafePrintf("FLASH found, put power down\n");
|
||||
}
|
||||
else {
|
||||
fFlash = false;
|
||||
gFlash.end();
|
||||
gSPI2.end();
|
||||
gCatena.SafePrintf("No FLASH found: check hardware\n");
|
||||
}
|
||||
}
|
||||
|
||||
void setup_uplink(void)
|
||||
{
|
||||
/* trigger a join by sending the first packet */
|
||||
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest))) {
|
||||
if (!gLoRaWAN.IsProvisioned())
|
||||
gCatena.SafePrintf("LoRaWAN not provisioned yet. Use the commands to set it up.\n");
|
||||
else {
|
||||
gLed.Set(LedPattern::Joining);
|
||||
|
||||
/* warm up the BME280 by discarding a measurement */
|
||||
if (fBme)
|
||||
(void)gBME280.readTemperature();
|
||||
|
||||
/* trigger a join by sending the first packet */
|
||||
ReadSensors(true, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The Arduino loop routine -- in our case, we just drive the other loops.
|
||||
// If we try to do too much, we can break the LMIC radio. So the work is
|
||||
// done by outcalls scheduled from the LMIC os loop.
|
||||
void loop()
|
||||
{
|
||||
gCatena.poll();
|
||||
}
|
||||
|
||||
void ClearLoraData(void)
|
||||
{
|
||||
lora_data.version = LORA_DATA_VERSION;
|
||||
lora_data.vbat = 0;
|
||||
lora_data.temperature = 0;
|
||||
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
||||
lora_data.humidity[i] = 0;
|
||||
lora_data.pressure[i] = 0;
|
||||
lora_data.weight[i] = 0;
|
||||
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
||||
lora_data.temperature_change[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
lora_data_first.version = LORA_DATA_VERSION_FIRST_PACKAGE;
|
||||
lora_data_first.vbat = 0;
|
||||
lora_data_first.humidity = 0;
|
||||
lora_data_first.pressure = 0;
|
||||
lora_data_first.weight1 = 0;
|
||||
lora_data_first.weight2 = 0;
|
||||
lora_data_first.weight = 0;
|
||||
lora_data_first.temperature = 0;
|
||||
|
||||
my_position = 0;
|
||||
}
|
||||
|
||||
void ShowLORAData(bool firstTime)
|
||||
{
|
||||
if (firstTime) {
|
||||
|
||||
gCatena.SafePrintf("{\n");
|
||||
gCatena.SafePrintf(" \"version\": \"%u\",\n", lora_data_first.version);
|
||||
gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data_first.vbat);
|
||||
gCatena.SafePrintf(" \"humidity\": \"%u\",\n", lora_data_first.humidity);
|
||||
gCatena.SafePrintf(" \"pressure\": \"%u\",\n", lora_data_first.pressure);
|
||||
gCatena.SafePrintf(" \"weight1\": \"%ld\",\n", lora_data_first.weight1);
|
||||
gCatena.SafePrintf(" \"weight2\": \"%ld\",\n", lora_data_first.weight2);
|
||||
gCatena.SafePrintf(" \"weight\": \"%u\",\n", lora_data_first.weight);
|
||||
gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data_first.temperature);
|
||||
gCatena.SafePrintf("}\n");
|
||||
|
||||
} else {
|
||||
|
||||
gCatena.SafePrintf("{\n");
|
||||
gCatena.SafePrintf(" \"version\": \"%u\",\n", lora_data.version);
|
||||
gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data.vbat);
|
||||
gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data.temperature);
|
||||
gCatena.SafePrintf(" \"humidity\": [");
|
||||
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
||||
gCatena.SafePrintf("%d", lora_data.humidity[i]);
|
||||
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
||||
gCatena.SafePrintf(",");
|
||||
}
|
||||
}
|
||||
gCatena.SafePrintf("],\n");
|
||||
gCatena.SafePrintf(" \"pressure\": [");
|
||||
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
||||
gCatena.SafePrintf("%d", lora_data.pressure[i]);
|
||||
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
||||
gCatena.SafePrintf(",");
|
||||
}
|
||||
}
|
||||
gCatena.SafePrintf("],\n");
|
||||
gCatena.SafePrintf(" \"weight\": [");
|
||||
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
||||
gCatena.SafePrintf("%ld", lora_data.weight[i]);
|
||||
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
||||
gCatena.SafePrintf(",");
|
||||
}
|
||||
}
|
||||
gCatena.SafePrintf("],\n");
|
||||
gCatena.SafePrintf(" \"temperature_change\": [");
|
||||
for (int i = 0; i < MAX_VALUES_TO_SEND - 1; i++) {
|
||||
gCatena.SafePrintf("%d", lora_data.temperature_change[i]);
|
||||
if (i < (MAX_VALUES_TO_SEND - 2)) {
|
||||
gCatena.SafePrintf(",");
|
||||
}
|
||||
}
|
||||
gCatena.SafePrintf("]\n");
|
||||
gCatena.SafePrintf("}\n");
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t GetVBatValue(int millivolts)
|
||||
{
|
||||
uint8_t res;
|
||||
if (millivolts <= 2510) {
|
||||
res = 0;
|
||||
|
||||
} else if (millivolts >= 4295) {
|
||||
res = 255;
|
||||
|
||||
} else {
|
||||
res = (millivolts - 2510) / 7;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void ReadSensors(bool firstTime, bool readOnly)
|
||||
{
|
||||
int16_t temp_current;
|
||||
uint8_t humidity_current;
|
||||
uint8_t pressure_current;
|
||||
int32_t weight1_current;
|
||||
int32_t weight2_current;
|
||||
int16_t temp_last;
|
||||
int16_t temp_change;
|
||||
int32_t weight_current32;
|
||||
uint16_t weight_current;
|
||||
uint16_t weight_last;
|
||||
|
||||
if (fBme) {
|
||||
Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity();
|
||||
// temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C
|
||||
// pressure is 2 bytes, hPa * 10.
|
||||
// humidity is one byte, where 0 == 0/256 and 0xFF == 255/256.
|
||||
gCatena.SafePrintf(
|
||||
"BME280: T: %d P: %d RH: %d\n",
|
||||
(int)m.Temperature,
|
||||
(int)m.Pressure,
|
||||
(int)m.Humidity);
|
||||
temp_current = (int16_t)((m.Temperature) * 10);
|
||||
humidity_current = (uint8_t)m.Humidity;
|
||||
pressure_current = (uint8_t)((m.Pressure / 100) - PRESSURE_OFFSET);
|
||||
gCatena.SafePrintf("pressure_current: %d\n", pressure_current);
|
||||
}
|
||||
|
||||
|
||||
// vBat
|
||||
float vBat = gCatena.ReadVbat();
|
||||
gCatena.SafePrintf("vBat: %d mV\n", (int)(vBat * 1000.0f));
|
||||
|
||||
// vBus
|
||||
float vBus = gCatena.ReadVbus();
|
||||
gCatena.SafePrintf("vBus: %d mV\n", (int)(vBus * 1000.0f));
|
||||
fUsbPower = (vBus > 3.0) ? true : false;
|
||||
|
||||
// Setup Scales
|
||||
setup_scales();
|
||||
|
||||
// Read Scales
|
||||
gCatena.SafePrintf("Before Read Scales\n");
|
||||
|
||||
// Power-Up HX711
|
||||
LoadCell_1.power_up();
|
||||
|
||||
if (!(LoadCell_1.wait_ready_timeout(1000))) {
|
||||
gCatena.SafePrintf("Scale 1 not ready.\n");
|
||||
}
|
||||
|
||||
gCatena.SafePrintf("Before Read Scales\n");
|
||||
if (LoadCell_1.is_ready()) {
|
||||
Serial.println("HX711 LoadCell_1 is ready.");
|
||||
long w1 = LoadCell_1.read_average(5);
|
||||
weight1_current = (int32_t)w1;
|
||||
gCatena.SafePrintf("Load_cell 1 output val: %ld\n", w1);
|
||||
gCatena.SafePrintf("Load_cell 1 weight1_current: %ld\n", weight1_current);
|
||||
}
|
||||
else {
|
||||
Serial.println("HX711 LoadCell_1 not ready.");
|
||||
}
|
||||
|
||||
// Power-Down HX711
|
||||
//LoadCell_1.power_down();
|
||||
|
||||
// Power-Up HX711
|
||||
LoadCell_2.power_up();
|
||||
|
||||
if (!(LoadCell_2.wait_ready_timeout(1000))) {
|
||||
gCatena.SafePrintf("Scale 2 not ready.\n");
|
||||
}
|
||||
|
||||
if (LoadCell_2.is_ready()) {
|
||||
Serial.println("HX711 LoadCell_2 is ready.");
|
||||
long w2 = LoadCell_2.read_average(5);
|
||||
weight2_current = (int32_t)w2;
|
||||
gCatena.SafePrintf("Load_cell 2 output val: %ld\n", w2);
|
||||
gCatena.SafePrintf("Load_cell 2 weight2_current: %ld\n", weight2_current);
|
||||
}
|
||||
else {
|
||||
Serial.println("HX711 LoadCell_2 not ready.");
|
||||
}
|
||||
|
||||
// Power-Down HX711
|
||||
//LoadCell_2.power_down();
|
||||
|
||||
// Disable Power
|
||||
digitalWrite(D10, LOW);
|
||||
|
||||
gCatena.SafePrintf("After Read Scales\n");
|
||||
|
||||
// Gewicht berechnen
|
||||
weight_current32 = (int32_t)((((weight1_current - config_data.cal_w1_0) / config_data.cal_w1_factor) + ((weight2_current - config_data.cal_w2_0) / config_data.cal_w2_factor)) / 5.0);
|
||||
if (weight_current32 < 0) {
|
||||
weight_current32 = 0;
|
||||
} else if (weight_current32 > UINT16_MAX) {
|
||||
weight_current32 = UINT16_MAX;
|
||||
}
|
||||
weight_current = (uint16_t)weight_current32;
|
||||
|
||||
if (not(readOnly)) {
|
||||
// calculate last value
|
||||
weight_last = 0;
|
||||
temp_last = lora_data.temperature;
|
||||
|
||||
for (int i = 0; i < my_position; i++) {
|
||||
temp_last = temp_last + lora_data.temperature_change[i];
|
||||
}
|
||||
|
||||
if (my_position > 0) {
|
||||
weight_last = lora_data.weight[my_position - 1];
|
||||
}
|
||||
|
||||
if (firstTime) {
|
||||
lora_data_first.vbat = GetVBatValue((int)(vBat * 1000.0f));
|
||||
lora_data_first.weight1 = weight1_current;
|
||||
lora_data_first.weight2 = weight2_current;
|
||||
lora_data_first.weight = weight_current;
|
||||
lora_data_first.temperature = temp_current;
|
||||
lora_data_first.humidity = humidity_current;
|
||||
lora_data_first.pressure = pressure_current;
|
||||
} else {
|
||||
lora_data.vbat = GetVBatValue((int)(vBat * 1000.0f));
|
||||
lora_data.weight[my_position] = weight_current;
|
||||
if (my_position == 0) {
|
||||
lora_data.temperature = temp_current;
|
||||
} else {
|
||||
temp_change = temp_current - temp_last;
|
||||
if (temp_change > 127) {
|
||||
temp_change = 127;
|
||||
}
|
||||
if (temp_change < -128) {
|
||||
temp_change = -128;
|
||||
}
|
||||
|
||||
lora_data.temperature_change[my_position - 1] = (uint8_t)temp_change;
|
||||
}
|
||||
lora_data.humidity[my_position] = humidity_current;
|
||||
lora_data.pressure[my_position] = pressure_current;
|
||||
}
|
||||
|
||||
if (my_position == 0) {
|
||||
timer_pos0 = millis();
|
||||
}
|
||||
|
||||
ShowLORAData(firstTime);
|
||||
my_position++;
|
||||
|
||||
// Should we send the Data?
|
||||
// we send data the first time the system is started, when the array is full
|
||||
// or when the weight has fallen more than 100g or the first measurement is
|
||||
// more than one hour old (which should not happen :-) )
|
||||
if (firstTime || (my_position >= MAX_VALUES_TO_SEND) || ((weight_last - weight_current) > 20) || ((millis() - timer_pos0) > 3600000)) {
|
||||
lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60);
|
||||
gCatena.SafePrintf("startSendingUplink()\n");
|
||||
startSendingUplink(firstTime);
|
||||
} else {
|
||||
gCatena.SafePrintf("now going to sleep for 6 minutes...\n");
|
||||
Serial.flush();
|
||||
gLed.Set(LedPattern::Sleeping);
|
||||
os_setTimedCallback(
|
||||
&sensorJob,
|
||||
os_getTime() + sec2osticks(CATCFG_T_INTERVAL),
|
||||
sleepDoneCb);
|
||||
if (!fUsbPower) {
|
||||
gCatena.Sleep(CATCFG_T_INTERVAL - 5);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
last_sensor_reading.vbat = GetVBatValue((int)(vBat * 1000.0f));
|
||||
|
||||
last_sensor_reading.weight1 = weight1_current;
|
||||
last_sensor_reading.weight2 = weight2_current;
|
||||
last_sensor_reading.weight = weight_current;
|
||||
last_sensor_reading.temperature = temp_current;
|
||||
last_sensor_reading.humidity = humidity_current;
|
||||
last_sensor_reading.pressure = pressure_current;
|
||||
}
|
||||
|
||||
void startSendingUplink(bool firstTime)
|
||||
{
|
||||
LedPattern savedLed = gLed.Set(LedPattern::Measuring);
|
||||
|
||||
if (savedLed != LedPattern::Joining)
|
||||
gLed.Set(LedPattern::Sending);
|
||||
else
|
||||
gLed.Set(LedPattern::Joining);
|
||||
|
||||
bool fConfirmed = false;
|
||||
if (gCatena.GetOperatingFlags() & (1 << 16)) {
|
||||
gCatena.SafePrintf("requesting confirmed tx\n");
|
||||
fConfirmed = true;
|
||||
}
|
||||
|
||||
if (firstTime) {
|
||||
gCatena.SafePrintf("SendBuffer firstTime\n");
|
||||
gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed);
|
||||
} else {
|
||||
gCatena.SafePrintf("SendBuffer not firstTime\n");
|
||||
gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed);
|
||||
}
|
||||
ClearLoraData();
|
||||
}
|
||||
|
||||
static void sendBufferDoneCb(
|
||||
void* pContext,
|
||||
bool fStatus)
|
||||
{
|
||||
osjobcb_t pFn;
|
||||
|
||||
gLed.Set(LedPattern::Settling);
|
||||
if (!fStatus) {
|
||||
gCatena.SafePrintf("send buffer failed\n");
|
||||
pFn = txFailedDoneCb;
|
||||
}
|
||||
else {
|
||||
pFn = settleDoneCb;
|
||||
}
|
||||
gCatena.SafePrintf("sendBufferDoneCB before TimedCallback\n");
|
||||
os_setTimedCallback(
|
||||
&sensorJob,
|
||||
os_getTime() + sec2osticks(CATCFG_T_SETTLE),
|
||||
pFn);
|
||||
gCatena.SafePrintf("sendBufferDoneCB after TimedCallback\n");
|
||||
}
|
||||
|
||||
static void txFailedDoneCb(
|
||||
osjob_t* pSendJob)
|
||||
{
|
||||
gCatena.SafePrintf("not provisioned, idling\n");
|
||||
gLoRaWAN.Shutdown();
|
||||
gLed.Set(LedPattern::NotProvisioned);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void settleDoneCb(
|
||||
osjob_t* pSendJob)
|
||||
{
|
||||
gCatena.SafePrintf("settleDoneCb\n");
|
||||
sleepDoneCb(pSendJob);
|
||||
}
|
||||
|
||||
static void sleepDoneCb(osjob_t* pJob)
|
||||
{
|
||||
gLed.Set(LedPattern::WarmingUp);
|
||||
|
||||
os_setTimedCallback(
|
||||
&sensorJob,
|
||||
os_getTime() + sec2osticks(CATCFG_T_WARMUP),
|
||||
warmupDoneCb);
|
||||
}
|
||||
|
||||
static void warmupDoneCb(osjob_t* pJob)
|
||||
{
|
||||
ReadSensors(false, false);
|
||||
}
|
||||
|
||||
static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage)
|
||||
{
|
||||
unsigned txCycle;
|
||||
unsigned txCount;
|
||||
|
||||
gCatena.SafePrintf("receiveMessage was called!!!\n");
|
||||
|
||||
if (! (port == 1 && 2 <= nMessage && nMessage <= 3))
|
||||
{
|
||||
gCatena.SafePrintf("invalid message port(%02x)/length(%zx)\n",
|
||||
port, nMessage
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
txCycle = (pMessage[0] << 8) | pMessage[1];
|
||||
|
||||
if (txCycle < CATCFG_T_MIN || txCycle > CATCFG_T_MAX)
|
||||
{
|
||||
gCatena.SafePrintf("tx cycle time out of range: %u\n", txCycle);
|
||||
return;
|
||||
}
|
||||
|
||||
// byte [2], if present, is the repeat count.
|
||||
// explicitly sending zero causes it to stick.
|
||||
txCount = CATCFG_INTERVAL_COUNT;
|
||||
if (nMessage >= 3)
|
||||
{
|
||||
txCount = pMessage[2];
|
||||
}
|
||||
|
||||
// we print out the received message...
|
||||
gCatena.SafePrintf("Received Data (Payload): \n");
|
||||
for (byte i = 0; i < nMessage; i++) {
|
||||
gCatena.SafePrintf("%c", pMessage[i]);
|
||||
}
|
||||
gCatena.SafePrintf("\n");
|
||||
|
||||
setTxCycleTime(txCycle, txCount);
|
||||
}
|
||||
|
||||
void setTxCycleTime(unsigned txCycle, unsigned txCount)
|
||||
{
|
||||
if (txCount > 0)
|
||||
gCatena.SafePrintf(
|
||||
"message cycle time %u seconds for %u messages\n",
|
||||
txCycle, txCount
|
||||
);
|
||||
else
|
||||
gCatena.SafePrintf(
|
||||
"message cycle time %u seconds indefinitely\n",
|
||||
txCycle
|
||||
);
|
||||
|
||||
gTxCycle = txCycle;
|
||||
gTxCycleCount = txCount;
|
||||
}
|
||||
|
||||
/* process "application hello" -- args are ignored */
|
||||
// argv[0] is "hello"
|
||||
// argv[1..argc-1] are the (ignored) arguments
|
||||
cCommandStream::CommandStatus cmdHello(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
pThis->printf("Hello, world!\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
|
||||
cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
pThis->printf("{\n");
|
||||
pThis->printf(" \"cal_w1_0\": \"%d\",\n", config_data.cal_w1_0);
|
||||
pThis->printf(" \"cal_w2_0\": \"%d\",\n", config_data.cal_w2_0);
|
||||
pThis->printf(" \"cal_w1_factor\": \"%d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000);
|
||||
pThis->printf(" \"cal_w2_factor\": \"%d.%03d\n", (int)config_data.cal_w2_factor, (int)abs(config_data.cal_w2_factor * 1000) % 1000);
|
||||
pThis->printf("}\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdGetSensorReadings(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
ReadSensors(false, true);
|
||||
pThis->printf("{\n");
|
||||
pThis->printf(" \"weight\": \"%d\",\n", last_sensor_reading.weight);
|
||||
pThis->printf(" \"weight1_raw\": \"%d\",\n", last_sensor_reading.weight1);
|
||||
pThis->printf(" \"weight2_raw\": \"%d\",\n", last_sensor_reading.weight2);
|
||||
pThis->printf(" \"temperature\": \"%d\",\n", last_sensor_reading.temperature);
|
||||
pThis->printf(" \"humidity\": \"%d\",\n", last_sensor_reading.humidity);
|
||||
pThis->printf(" \"pressure\": \"%d\",\n", last_sensor_reading.pressure);
|
||||
pThis->printf(" \"batt\": \"%d\",\n", last_sensor_reading.vbat);
|
||||
pThis->printf("}\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdGetScale1(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
pThis->printf("getscale1\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdGetScale2(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
pThis->printf("getscale2\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdCalibrateZeroScale1(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
ReadSensors(false, true);
|
||||
config_data.cal_w1_0 = last_sensor_reading.weight1;
|
||||
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
||||
|
||||
pThis->printf("{ \"msg\": \"calibrate_zero_scale1 was successful\" }\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdCalibrateZeroScale2(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
ReadSensors(false, true);
|
||||
config_data.cal_w2_0 = last_sensor_reading.weight2;
|
||||
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
||||
|
||||
pThis->printf("{ \"msg\": \"calibrate_zero_scale2 was successful\" }\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdCalibrateScale1(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
ReadSensors(false, true);
|
||||
|
||||
String w1_gramm(argv[1]);
|
||||
config_data.cal_w1_factor = (((float)last_sensor_reading.weight1 - config_data.cal_w1_0) / w1_gramm.toFloat());
|
||||
|
||||
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
||||
|
||||
gCatena.SafePrintf("last_sensor_reading.weight1: %ld\n", last_sensor_reading.weight1);
|
||||
gCatena.SafePrintf("config_data.cal_w1_0: %ld\n", config_data.cal_w1_0);
|
||||
gCatena.SafePrintf("w1_gramm: %s\n", w1_gramm);
|
||||
gCatena.SafePrintf("w1_gramm (float): %d\n", (int)w1_gramm.toFloat());
|
||||
gCatena.SafePrintf("config_data.cal_w1_factor: %d\n", (int)config_data.cal_w1_factor);
|
||||
|
||||
pThis->printf("{ \"msg\": \"calibrate_scale1 was successful\" }\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
cCommandStream::CommandStatus cmdCalibrateScale2(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
||||
{
|
||||
ReadSensors(false, true);
|
||||
|
||||
String w2_gramm(argv[1]);
|
||||
config_data.cal_w2_factor = (((float)last_sensor_reading.weight2 - config_data.cal_w2_0) / w2_gramm.toFloat());
|
||||
|
||||
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
||||
|
||||
pThis->printf("{ \"msg\": \"calibrate_scale2 was successful\" }\n");
|
||||
|
||||
return cCommandStream::CommandStatus::kSuccess;
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue