use median instead of average
This commit is contained in:
parent
730904e6ba
commit
4c021ff34a
|
|
@ -536,13 +536,52 @@ void DoDeepSleep(uint32_t sleep_time)
|
|||
}
|
||||
}
|
||||
|
||||
//Following functions are based on "https://github.com/dndubins/QuickStats", by David Dubins
|
||||
|
||||
long median(long samples[], int m) //calculate the median
|
||||
{
|
||||
//First bubble sort the values: https://en.wikipedia.org/wiki/Bubble_sort
|
||||
long sorted[m]; // Define and initialize sorted array.
|
||||
long temp = 0; // Temporary float for swapping elements
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
sorted[i] = samples[i];
|
||||
}
|
||||
bubbleSort(sorted, m); // Sort the values
|
||||
|
||||
if (bitRead(m, 0) == 1) { //If the last bit of a number is 1, it's odd. This is equivalent to "TRUE". Also use if m%2!=0.
|
||||
return sorted[m / 2]; //If the number of data points is odd, return middle number.
|
||||
} else {
|
||||
return (sorted[(m / 2) - 1] + sorted[m / 2]) / 2; //If the number of data points is even, return avg of the middle two numbers.
|
||||
}
|
||||
}
|
||||
|
||||
void bubbleSort(long A[], int len) {
|
||||
unsigned long newn;
|
||||
unsigned long n = len;
|
||||
long temp = 0;
|
||||
do {
|
||||
newn = 1;
|
||||
for (int p = 1; p < len; p++) {
|
||||
if (A[p - 1] > A[p]) {
|
||||
temp = A[p]; //swap places in array
|
||||
A[p] = A[p - 1];
|
||||
A[p - 1] = temp;
|
||||
newn = p;
|
||||
} //end if
|
||||
} //end for
|
||||
n = newn;
|
||||
} while (n > 1);
|
||||
}
|
||||
|
||||
long my_read_average(byte gain, byte times) {
|
||||
// highest and lowest value will be ignored
|
||||
long sum = 0;
|
||||
long v = 0;
|
||||
long L = 2147483647;
|
||||
long H = -2147483648;
|
||||
long res;
|
||||
int const num_scale_readings = 100; //number of instantaneous scale readings to calculate the median
|
||||
|
||||
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
|
||||
long readings[num_scale_readings]; // create arry to hold readings
|
||||
|
||||
// highest and lowest value will be ignored
|
||||
if (config_data.debug_level > 0) {
|
||||
gCatena.SafePrintf("%010d - my_read_average, measurements: ", millis());
|
||||
}
|
||||
|
|
@ -551,22 +590,14 @@ long my_read_average(byte gain, byte times) {
|
|||
// we wait 400ms (settling time according HX711 datasheet @ 10 SPS
|
||||
delay(400);
|
||||
|
||||
for (byte i = 0; i < times; i++) {
|
||||
// we wait 400ms (settling time according HX711 datasheet @ 10 SPS)
|
||||
v = LoadCell.read();
|
||||
|
||||
if (L > v) L = v; // find lowest value
|
||||
if (H < v) H = v; // find highest value
|
||||
sum += v;
|
||||
if (config_data.debug_level > 0) {
|
||||
gCatena.SafePrintf("%d ", v);
|
||||
}
|
||||
gCatena.poll();
|
||||
delay(WAITTIMELOADSAMPLES);
|
||||
for (int i = 0; i < num_scale_readings; i++) {
|
||||
readings[i] = LoadCell.read(); // fill the array with instantaneous readings from the scale
|
||||
}
|
||||
res = (sum - L - H) / (times - 2);
|
||||
|
||||
res = median(readings, num_scale_readings); //calculate median
|
||||
|
||||
if (config_data.debug_level > 0) {
|
||||
gCatena.SafePrintf("; average (without highest [%d] and lowest [%d] value): %d\n", H, L, res);
|
||||
gCatena.SafePrintf("; median of %d samples: %d\n", num_scale_readings, res);
|
||||
}
|
||||
|
||||
return res;
|
||||
|
|
|
|||
|
|
@ -55,10 +55,7 @@ enum {
|
|||
|
|
||||
\****************************************************************************/
|
||||
|
||||
static const int32_t fwVersion = 20200109;
|
||||
|
||||
// wait between samples in milliseconds
|
||||
const int WAITTIMELOADSAMPLES = 100;
|
||||
static const int32_t fwVersion = 20200113;
|
||||
|
||||
static const byte INIT_PACKAGE_INTERVAL = 100; // send an init package every 100 packages;
|
||||
static const byte MAX_VALUES_TO_SEND = 8;
|
||||
|
|
|
|||
Loading…
Reference in New Issue