/* mini-beieli-node.ino BeieliScale, see https://mini-beieli.ch Joerg Lehmann, nbit Informatik GmbH */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace McciCatena; #define DEBUG /****************************************************************************\ | | MANIFEST CONSTANTS & TYPEDEFS | \****************************************************************************/ /* how long do we wait between transmissions? (in seconds) */ enum { // set this to interval between transmissions, in seconds // Actual time will be a little longer because have to // add measurement and broadcast time, but we attempt // to compensate for the gross effects below. CATCFG_T_CYCLE = 6 * 60, // every 6 minutes CATCFG_T_CYCLE_TEST = 30, // every 10 seconds CATCFG_T_CYCLE_INITIAL = 30, // every 30 seconds initially CATCFG_INTERVAL_COUNT_INITIAL = 30, // repeat for 15 minutes }; /* additional timing parameters; ususually you don't change these. */ enum { CATCFG_T_WARMUP = 1, CATCFG_T_SETTLE = 5, CATCFG_T_OVERHEAD = (CATCFG_T_WARMUP + CATCFG_T_SETTLE), CATCFG_T_MIN = CATCFG_T_OVERHEAD, CATCFG_T_MAX = CATCFG_T_CYCLE < 60 * 60 ? 60 * 60 : CATCFG_T_CYCLE, // normally one hour max. CATCFG_INTERVAL_COUNT = 30, }; constexpr uint32_t CATCFG_GetInterval(uint32_t tCycle) { return (tCycle < CATCFG_T_OVERHEAD) ? CATCFG_T_OVERHEAD : tCycle - CATCFG_T_OVERHEAD; } enum { CATCFG_T_INTERVAL = CATCFG_GetInterval(CATCFG_T_CYCLE), }; enum { PIN_ONE_WIRE = A2, // XSDA1 == A2 PIN_SHT10_CLK = 8, // XSCL0 == D8 PIN_SHT10_DATA = 12, // XSDA0 == D12 }; // the cycle time to use unsigned gTxCycle; // remaining before we reset to default unsigned gTxCycleCount; // forwards static void settleDoneCb(osjob_t* pSendJob); static void warmupDoneCb(osjob_t* pSendJob); static void txFailedDoneCb(osjob_t* pSendJob); static void sleepDoneCb(osjob_t* pSendJob); static Arduino_LoRaWAN::SendBufferCbFn sendBufferDoneCb; static Arduino_LoRaWAN::ReceivePortBufferCbFn receiveMessage; void setTxCycleTime(unsigned txCycle, unsigned txCount); // Additional Commands // forward reference to the command function cCommandStream::CommandFn cmdHello; cCommandStream::CommandFn cmdGetCalibrationSettings; cCommandStream::CommandFn cmdGetSensorReadings; cCommandStream::CommandFn cmdGetScaleA; cCommandStream::CommandFn cmdGetScaleB; cCommandStream::CommandFn cmdCalibrateZeroScaleA; cCommandStream::CommandFn cmdCalibrateZeroScaleB; cCommandStream::CommandFn cmdCalibrateScaleA; cCommandStream::CommandFn cmdCalibrateScaleB; // the individual commmands are put in this table static const cCommandStream::cEntry sMyExtraCommmands[] = { { "hello", cmdHello }, { "get_calibration_settings", cmdGetCalibrationSettings }, { "get_sensor_readings", cmdGetSensorReadings }, { "calibrate_zero_scale_a", cmdCalibrateZeroScaleA }, { "calibrate_zero_scale_b", cmdCalibrateZeroScaleB }, { "calibrate_scale_a", cmdCalibrateScaleA }, { "calibrate_scale_b", cmdCalibrateScaleB }, // other commands go here.... }; /* a top-level structure wraps the above and connects to the system table */ /* it optionally includes a "first word" so you can for sure avoid name clashes */ static cCommandStream::cDispatch sMyExtraCommands_top( sMyExtraCommmands, /* this is the pointer to the table */ sizeof(sMyExtraCommmands), /* this is the size of the table */ "application" /* this is the "first word" for all the commands in this table*/ ); /****************************************************************************\ | | READ-ONLY DATA | \****************************************************************************/ static const char sVersion[] = "0.1"; static const byte MAX_VALUES_TO_SEND = 8; static const uint8_t LORA_DATA_VERSION = 1; static const uint8_t LORA_DATA_VERSION_FIRST_PACKAGE = 128; static const uint32_t PRESSURE_OFFSET = 825; /****************************************************************************\ | | VARIABLES | \****************************************************************************/ // must be 65 bytes long... typedef struct { long cal_w1_0; // 4 Bytes, Wert Waegezelle 1 ohne Gewicht long cal_w2_0; // 4 Bytes, Wert Waegezelle 2 ohne Gewicht float cal_w1_factor; // 4 Bytes, float cal_w2_factor; byte fill[123]; } __attribute__((packed)) CONFIG_data; typedef struct { uint8_t version; // Version uint8_t vbat; // Batteriespannung (0: <= 2510mV, 70: 3000mV, 170: 3700mV, 255: >= 4295mV [1 Einheit => 7mV]) uint8_t humidity[MAX_VALUES_TO_SEND]; // Luftfeuchtigkeit in Prozent int16_t temperature; // Temperatur (Startwert) in 1/10 Grad Celsius int8_t temperature_change[MAX_VALUES_TO_SEND - 1]; // Unterschied Temperatur seit letztem Messwert in 1/10 Grad Celsius uint8_t pressure[MAX_VALUES_TO_SEND]; // Luftdruck in Hekto-Pascal (0 entspricht 825 hPa) uint16_t weight[MAX_VALUES_TO_SEND]; // Waegezelle Gesamtgewicht, in 5g uint8_t offset_last_reading; // Zeitunterschied letzte zu erste Messung (in Minuten) } __attribute__((packed)) LORA_data; typedef struct { uint8_t version; // Version uint8_t vbat; // Batteriespannung (0: <= 2510mV, 70: 3000mV, 170: 3700mV, 255: >= 4295mV [1 Einheit => 7mV]) uint8_t humidity; // Luftfeuchtigkeit in Prozent int16_t temperature; // Temperatur in 1/10 Grad Celsius uint8_t pressure; // Luftdruck in Hekto-Pascal (0 entspricht 825 hPa) int32_t weight1; // Waegezelle 1, Raw Value int32_t weight2; // Waegezelle 2, Raw Value uint16_t weight; // Waegezelle Gesamtgewicht, in 5g } __attribute__((packed)) LORA_data_first; typedef struct { uint8_t vbat; // Batteriespannung (0: <= 2510mV, 70: 3000mV, 170: 3700mV, 255: >= 4295mV [1 Einheit => 7mV]) uint8_t humidity; // Luftfeuchtigkeit in Prozent int16_t temperature; // Temperatur in 1/10 Grad Celsius uint8_t pressure; // Luftdruck in Hekto-Pascal (0 entspricht 825 hPa) int32_t weight1; // Waegezelle 1, Raw Value int32_t weight2; // Waegezelle 2, Raw Value uint16_t weight; // Waegezelle Gesamtgewicht, in 5g } SENSOR_data; byte my_position = 0; // what is our actual measurement, starts with 0 long timer_pos0; // Global Variables LORA_data lora_data; LORA_data_first lora_data_first; CONFIG_data config_data; SENSOR_data last_sensor_reading; // generic timer long t_cur; // the primary object Catena gCatena; // // the LoRaWAN backhaul. Note that we use the // Catena version so it can provide hardware-specific // information to the base class. // Catena::LoRaWAN gLoRaWAN; // // the LED // StatusLed gLed(Catena::PIN_STATUS_LED); // The temperature/humidity sensor Adafruit_BME280 gBME280; // The default initalizer creates an I2C connection bool fBme; SPIClass gSPI2( Catena::PIN_SPI2_MOSI, Catena::PIN_SPI2_MISO, Catena::PIN_SPI2_SCK); // The flash Catena_Mx25v8035f gFlash; bool fFlash; // Scales HX711 LoadCell; // USB power bool fUsbPower; // have we printed the sleep info? bool g_fPrintedSleeping = false; // the job that's used to synchronize us with the LMIC code static osjob_t sensorJob; void sensorJob_cb(osjob_t* pJob); void setup(void) { gCatena.begin(); ClearLoraData(); // Use D10 to regulate power pinMode(D10, OUTPUT); setup_platform(); setup_bme280(); //setup_scales(); /* for 4451, we need wider tolerances, it seems */ #if defined(ARDUINO_ARCH_STM32) LMIC_setClockError(10 * 65536 / 100); #endif setup_flash(); setup_uplink(); } void setup_platform(void) { /* add our application-specific commands */ gCatena.addCommands( sMyExtraCommands_top, nullptr ); // read config_data from fram... #ifdef DEBUG gCatena.SafePrintf("Reading Calibration Config from FRAM...\n"); #endif gCatena.getFram()->getField(cFramStorage::kBme680Cal, (uint8_t *)&config_data, sizeof(config_data)); #ifdef DEBUG gCatena.SafePrintf("cal_w1_0: %d\n", config_data.cal_w1_0); gCatena.SafePrintf("cal_w2_0: %d\n", config_data.cal_w2_0); gCatena.SafePrintf("cal_w1_factor: %d.%03d\n", (int)config_data.cal_w1_factor, (int)(config_data.cal_w1_factor * 1000) % 1000); gCatena.SafePrintf("cal_w2_factor: %d.%03d\n", (int)config_data.cal_w2_factor, (int)(config_data.cal_w2_factor * 1000) % 1000); gCatena.SafePrintf("Size of config_data: %d\n", sizeof(config_data)); #endif #ifdef USBCON // if running unattended, don't wait for USB connect. if (!(gCatena.GetOperatingFlags() & static_cast(gCatena.OPERATING_FLAGS::fUnattended))) { while (!Serial) /* wait for USB attach */ yield(); } #endif gCatena.SafePrintf("\n"); gCatena.SafePrintf("-------------------------------------------------------------------------------\n"); gCatena.SafePrintf("mini-beieli.ch - BeieliScale Version %s.\n", sVersion); { char sRegion[16]; gCatena.SafePrintf("Target network: %s / %s\n", gLoRaWAN.GetNetworkName(), gLoRaWAN.GetRegionString(sRegion, sizeof(sRegion))); } gCatena.SafePrintf("Enter 'help' for a list of commands.\n"); #ifdef CATENA_CFG_SYSCLK gCatena.SafePrintf("SYSCLK: %d MHz\n", CATENA_CFG_SYSCLK); #endif #ifdef USBCON gCatena.SafePrintf("USB enabled\n"); #else gCatena.SafePrintf("USB disabled\n"); #endif Catena::UniqueID_string_t CpuIDstring; gCatena.SafePrintf( "CPU Unique ID: %s\n", gCatena.GetUniqueIDstring(&CpuIDstring)); gCatena.SafePrintf("--------------------------------------------------------------------------------\n"); gCatena.SafePrintf("\n"); // set up the LED gLed.begin(); gCatena.registerObject(&gLed); gLed.Set(LedPattern::FastFlash); // set up LoRaWAN gCatena.SafePrintf("LoRaWAN init: "); if (!gLoRaWAN.begin(&gCatena)) { gCatena.SafePrintf("failed\n"); } else { gCatena.SafePrintf("succeeded\n"); } gLoRaWAN.SetReceiveBufferBufferCb(receiveMessage); setTxCycleTime(CATCFG_T_CYCLE_INITIAL, CATCFG_INTERVAL_COUNT_INITIAL); gCatena.registerObject(&gLoRaWAN); /* find the platform */ const Catena::EUI64_buffer_t* pSysEUI = gCatena.GetSysEUI(); uint32_t flags; const CATENA_PLATFORM* const pPlatform = gCatena.GetPlatform(); if (pPlatform) { gCatena.SafePrintf("EUI64: "); for (unsigned i = 0; i < sizeof(pSysEUI->b); ++i) { gCatena.SafePrintf("%s%02x", i == 0 ? "" : "-", pSysEUI->b[i]); } gCatena.SafePrintf("\n"); flags = gCatena.GetPlatformFlags(); gCatena.SafePrintf( "Platform Flags: %#010x\n", flags); gCatena.SafePrintf( "Operating Flags: %#010x\n", gCatena.GetOperatingFlags()); } else { gCatena.SafePrintf("**** no platform, check provisioning ****\n"); flags = 0; } } void setup_bme280(void) { if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep)) { fBme = true; } else { fBme = false; gCatena.SafePrintf("No BME280 found: check wiring\n"); } } void setup_scales(void) { #ifdef DEBUG gCatena.SafePrintf("Setup Scales...\n"); #endif // Enable Power digitalWrite(D10, HIGH); // Initialize library with data output pin, clock input pin and gain factor. // Channel selection is made by passing the appropriate gain: // - With a gain factor of 64 or 128, channel A is selected // - With a gain factor of 32, channel B is selected // By omitting the gain factor parameter, the library // default "128" (Channel A) is used here. #ifdef DEBUG gCatena.SafePrintf("Setup Scale 1...\n"); #endif LoadCell.begin(A1, A0); if (!(LoadCell.wait_ready_timeout(1000))) { gCatena.SafePrintf("Scale not ready.\n"); } #ifdef DEBUG gCatena.SafePrintf("Setup Scale is complete\n"); #endif } void setup_flash(void) { if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS)) { fFlash = true; gFlash.powerDown(); gCatena.SafePrintf("FLASH found, but power down\n"); } else { fFlash = false; gFlash.end(); gSPI2.end(); gCatena.SafePrintf("No FLASH found: check hardware\n"); } } void setup_uplink(void) { /* trigger a join by sending the first packet */ if (!(gCatena.GetOperatingFlags() & static_cast(gCatena.OPERATING_FLAGS::fManufacturingTest))) { if (!gLoRaWAN.IsProvisioned()) gCatena.SafePrintf("LoRaWAN not provisioned yet. Use the commands to set it up.\n"); else { gLed.Set(LedPattern::Joining); /* warm up the BME280 by discarding a measurement */ if (fBme) (void)gBME280.readTemperature(); /* trigger a join by sending the first packet */ ReadSensors(true, false); } } } // The Arduino loop routine -- in our case, we just drive the other loops. // If we try to do too much, we can break the LMIC radio. So the work is // done by outcalls scheduled from the LMIC os loop. void loop() { gCatena.poll(); } void ClearLoraData(void) { lora_data.version = LORA_DATA_VERSION; lora_data.vbat = 0; lora_data.temperature = 0; for (int i = 0; i < MAX_VALUES_TO_SEND; i++) { lora_data.humidity[i] = 0; lora_data.pressure[i] = 0; lora_data.weight[i] = 0; if (i < (MAX_VALUES_TO_SEND - 1)) { lora_data.temperature_change[i] = 0; } } lora_data_first.version = LORA_DATA_VERSION_FIRST_PACKAGE; lora_data_first.vbat = 0; lora_data_first.humidity = 0; lora_data_first.pressure = 0; lora_data_first.weight1 = 0; lora_data_first.weight2 = 0; lora_data_first.weight = 0; lora_data_first.temperature = 0; my_position = 0; } void ShowLORAData(bool firstTime) { if (firstTime) { gCatena.SafePrintf("{\n"); gCatena.SafePrintf(" \"version\": \"%u\",\n", lora_data_first.version); gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data_first.vbat); gCatena.SafePrintf(" \"humidity\": \"%u\",\n", lora_data_first.humidity); gCatena.SafePrintf(" \"pressure\": \"%u\",\n", lora_data_first.pressure); gCatena.SafePrintf(" \"weight1\": \"%ld\",\n", lora_data_first.weight1); gCatena.SafePrintf(" \"weight2\": \"%ld\",\n", lora_data_first.weight2); gCatena.SafePrintf(" \"weight\": \"%u\",\n", lora_data_first.weight); gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data_first.temperature); gCatena.SafePrintf("}\n"); } else { gCatena.SafePrintf("{\n"); gCatena.SafePrintf(" \"version\": \"%u\",\n", lora_data.version); gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data.vbat); gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data.temperature); gCatena.SafePrintf(" \"humidity\": ["); for (int i = 0; i < MAX_VALUES_TO_SEND; i++) { gCatena.SafePrintf("%d", lora_data.humidity[i]); if (i < (MAX_VALUES_TO_SEND - 1)) { gCatena.SafePrintf(","); } } gCatena.SafePrintf("],\n"); gCatena.SafePrintf(" \"pressure\": ["); for (int i = 0; i < MAX_VALUES_TO_SEND; i++) { gCatena.SafePrintf("%d", lora_data.pressure[i]); if (i < (MAX_VALUES_TO_SEND - 1)) { gCatena.SafePrintf(","); } } gCatena.SafePrintf("],\n"); gCatena.SafePrintf(" \"weight\": ["); for (int i = 0; i < MAX_VALUES_TO_SEND; i++) { gCatena.SafePrintf("%ld", lora_data.weight[i]); if (i < (MAX_VALUES_TO_SEND - 1)) { gCatena.SafePrintf(","); } } gCatena.SafePrintf("],\n"); gCatena.SafePrintf(" \"temperature_change\": ["); for (int i = 0; i < MAX_VALUES_TO_SEND - 1; i++) { gCatena.SafePrintf("%d", lora_data.temperature_change[i]); if (i < (MAX_VALUES_TO_SEND - 2)) { gCatena.SafePrintf(","); } } gCatena.SafePrintf("]\n"); gCatena.SafePrintf("}\n"); } } uint8_t GetVBatValue(int millivolts) { uint8_t res; if (millivolts <= 2510) { res = 0; } else if (millivolts >= 4295) { res = 255; } else { res = (millivolts - 2510) / 7; } return res; } void DoDeepSleep() { gCatena.SafePrintf("Now going to deep sleep: %d\n",millis()); // Prepare Deep Sleep gLed.Set(LedPattern::Off); Serial.end(); Wire.end(); SPI.end(); if (fFlash) gSPI2.end(); // Now sleeping... gCatena.Sleep(CATCFG_T_INTERVAL - 5); // Recover from wakeup... Serial.begin(); Wire.begin(); SPI.begin(); if (fFlash) gSPI2.begin(); gCatena.SafePrintf("Done with deep sleep: %d\n",millis()); } void ReadSensors(bool firstTime, bool readOnly) { int16_t temp_current; uint8_t humidity_current; uint8_t pressure_current; int32_t weight1_current; int32_t weight2_current; int16_t temp_last; int16_t temp_change; int32_t weight_current32; uint16_t weight_current; uint16_t weight_last; if (fBme) { Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity(); // temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C // pressure is 2 bytes, hPa * 10. // humidity is one byte, where 0 == 0/256 and 0xFF == 255/256. #ifdef DEBUG gCatena.SafePrintf( "BME280: T: %d P: %d RH: %d\n", (int)m.Temperature, (int)m.Pressure, (int)m.Humidity); #endif temp_current = (int16_t)((m.Temperature) * 10); humidity_current = (uint8_t)m.Humidity; pressure_current = (uint8_t)((m.Pressure / 100) - PRESSURE_OFFSET); #ifdef DEBUG gCatena.SafePrintf("pressure_current: %d\n", pressure_current); #endif } // vBat float vBat = gCatena.ReadVbat(); #ifdef DEBUG gCatena.SafePrintf("vBat: %d mV\n", (int)(vBat * 1000.0f)); #endif // vBus float vBus = gCatena.ReadVbus(); #ifdef DEBUG gCatena.SafePrintf("vBus: %d mV\n", (int)(vBus * 1000.0f)); #endif fUsbPower = (vBus > 3.0) ? true : false; // Setup Scales setup_scales(); // Read Scales if (LoadCell.is_ready()) { #ifdef DEBUG Serial.println("HX711 LoadCell is ready."); #endif LoadCell.set_gain(128); long w1 = LoadCell.read_average(5); weight1_current = (int32_t)w1; #ifdef DEBUG gCatena.SafePrintf("Load_cell 1 output val: %ld\n", w1); gCatena.SafePrintf("Load_cell 1 weight1_current: %ld\n", weight1_current); #endif LoadCell.set_gain(32); long w2 = LoadCell.read_average(5); weight2_current = (int32_t)w2; #ifdef DEBUG gCatena.SafePrintf("Load_cell 2 output val: %ld\n", w2); gCatena.SafePrintf("Load_cell 2 weight2_current: %ld\n", weight2_current); #endif } else { Serial.println("HX711 LoadCell not ready."); } // Disable Power digitalWrite(D10, LOW); // Gewicht berechnen weight_current32 = (int32_t)((((weight1_current - config_data.cal_w1_0) / config_data.cal_w1_factor) + ((weight2_current - config_data.cal_w2_0) / config_data.cal_w2_factor)) / 5.0); if (weight_current32 < 0) { weight_current32 = 0; } else if (weight_current32 > UINT16_MAX) { weight_current32 = UINT16_MAX; } weight_current = (uint16_t)weight_current32; if (not(readOnly)) { // calculate last value weight_last = 0; temp_last = lora_data.temperature; for (int i = 0; i < my_position; i++) { temp_last = temp_last + lora_data.temperature_change[i]; } if (my_position > 0) { weight_last = lora_data.weight[my_position - 1]; } if (firstTime) { lora_data_first.vbat = GetVBatValue((int)(vBat * 1000.0f)); lora_data_first.weight1 = weight1_current; lora_data_first.weight2 = weight2_current; lora_data_first.weight = weight_current; lora_data_first.temperature = temp_current; lora_data_first.humidity = humidity_current; lora_data_first.pressure = pressure_current; } else { lora_data.vbat = GetVBatValue((int)(vBat * 1000.0f)); lora_data.weight[my_position] = weight_current; if (my_position == 0) { lora_data.temperature = temp_current; } else { temp_change = temp_current - temp_last; if (temp_change > 127) { temp_change = 127; } if (temp_change < -128) { temp_change = -128; } lora_data.temperature_change[my_position - 1] = (uint8_t)temp_change; } lora_data.humidity[my_position] = humidity_current; lora_data.pressure[my_position] = pressure_current; } if (my_position == 0) { timer_pos0 = millis(); } ShowLORAData(firstTime); my_position++; // Should we send the Data? // we send data the first time the system is started, when the array is full // or when the weight has fallen more than 100g or the first measurement is // more than one hour old (which should not happen :-) ) if (firstTime || (my_position >= MAX_VALUES_TO_SEND) || ((weight_last - weight_current) > 20) || ((millis() - timer_pos0) > 3600000)) { lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60); gCatena.SafePrintf("startSendingUplink()\n"); startSendingUplink(firstTime); } else { gCatena.SafePrintf("now going to sleep for 6 minutes...\n"); Serial.flush(); gLed.Set(LedPattern::Sleeping); os_setTimedCallback( &sensorJob, os_getTime() + sec2osticks(CATCFG_T_INTERVAL), sleepDoneCb); if (!fUsbPower) { DoDeepSleep(); } } } last_sensor_reading.vbat = GetVBatValue((int)(vBat * 1000.0f)); last_sensor_reading.weight1 = weight1_current; last_sensor_reading.weight2 = weight2_current; last_sensor_reading.weight = weight_current; last_sensor_reading.temperature = temp_current; last_sensor_reading.humidity = humidity_current; last_sensor_reading.pressure = pressure_current; } void startSendingUplink(bool firstTime) { LedPattern savedLed = gLed.Set(LedPattern::Measuring); if (savedLed != LedPattern::Joining) gLed.Set(LedPattern::Sending); else gLed.Set(LedPattern::Joining); bool fConfirmed = false; if (gCatena.GetOperatingFlags() & (1 << 16)) { #ifdef DEBUG gCatena.SafePrintf("requesting confirmed tx\n"); #endif fConfirmed = true; } if (firstTime) { #ifdef DEBUG gCatena.SafePrintf("SendBuffer firstTime\n"); #endif gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed); } else { #ifdef DEBUG gCatena.SafePrintf("SendBuffer not firstTime\n"); #endif gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed); } ClearLoraData(); } static void sendBufferDoneCb( void* pContext, bool fStatus) { osjobcb_t pFn; gLed.Set(LedPattern::Settling); if (!fStatus) { gCatena.SafePrintf("send buffer failed\n"); pFn = txFailedDoneCb; } else { pFn = settleDoneCb; } os_setTimedCallback( &sensorJob, os_getTime() + sec2osticks(CATCFG_T_SETTLE), pFn); } static void txFailedDoneCb( osjob_t* pSendJob) { gCatena.SafePrintf("not provisioned, idling\n"); gLoRaWAN.Shutdown(); gLed.Set(LedPattern::NotProvisioned); } static void settleDoneCb( osjob_t* pSendJob) { #ifdef DEBUG gCatena.SafePrintf("settleDoneCb\n"); #endif sleepDoneCb(pSendJob); } static void sleepDoneCb(osjob_t* pJob) { gLed.Set(LedPattern::WarmingUp); os_setTimedCallback( &sensorJob, os_getTime() + sec2osticks(CATCFG_T_WARMUP), warmupDoneCb); } static void warmupDoneCb(osjob_t* pJob) { ReadSensors(false, false); } static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage) { unsigned txCycle; unsigned txCount; #ifdef DEBUG gCatena.SafePrintf("receiveMessage was called!!!\n"); #endif if (! (port == 1 && 2 <= nMessage && nMessage <= 3)) { gCatena.SafePrintf("invalid message port(%02x)/length(%zx)\n", port, nMessage ); return; } txCycle = (pMessage[0] << 8) | pMessage[1]; if (txCycle < CATCFG_T_MIN || txCycle > CATCFG_T_MAX) { gCatena.SafePrintf("tx cycle time out of range: %u\n", txCycle); return; } // byte [2], if present, is the repeat count. // explicitly sending zero causes it to stick. txCount = CATCFG_INTERVAL_COUNT; if (nMessage >= 3) { txCount = pMessage[2]; } // we print out the received message... gCatena.SafePrintf("Received Data (Payload): \n"); for (byte i = 0; i < nMessage; i++) { gCatena.SafePrintf("%c", pMessage[i]); } gCatena.SafePrintf("\n"); setTxCycleTime(txCycle, txCount); } void setTxCycleTime(unsigned txCycle, unsigned txCount) { if (txCount > 0) gCatena.SafePrintf( "message cycle time %u seconds for %u messages\n", txCycle, txCount ); else gCatena.SafePrintf( "message cycle time %u seconds indefinitely\n", txCycle ); gTxCycle = txCycle; gTxCycleCount = txCount; } /* process "application hello" -- args are ignored */ // argv[0] is "hello" // argv[1..argc-1] are the (ignored) arguments cCommandStream::CommandStatus cmdHello(cCommandStream *pThis, void *pContext, int argc, char **argv) { pThis->printf("Hello, world!\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream *pThis, void *pContext, int argc, char **argv) { pThis->printf("{\n"); pThis->printf(" \"cal_w1_0\": \"%d\",\n", config_data.cal_w1_0); pThis->printf(" \"cal_w2_0\": \"%d\",\n", config_data.cal_w2_0); pThis->printf(" \"cal_w1_factor\": \"%d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000); pThis->printf(" \"cal_w2_factor\": \"%d.%03d\n", (int)config_data.cal_w2_factor, (int)abs(config_data.cal_w2_factor * 1000) % 1000); pThis->printf("}\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdGetSensorReadings(cCommandStream *pThis, void *pContext, int argc, char **argv) { ReadSensors(false, true); pThis->printf("{\n"); pThis->printf(" \"weight\": \"%d\",\n", last_sensor_reading.weight); pThis->printf(" \"weight1_raw\": \"%d\",\n", last_sensor_reading.weight1); pThis->printf(" \"weight2_raw\": \"%d\",\n", last_sensor_reading.weight2); pThis->printf(" \"temperature\": \"%d\",\n", last_sensor_reading.temperature); pThis->printf(" \"humidity\": \"%d\",\n", last_sensor_reading.humidity); pThis->printf(" \"pressure\": \"%d\",\n", last_sensor_reading.pressure); pThis->printf(" \"batt\": \"%d\",\n", last_sensor_reading.vbat); pThis->printf("}\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdGetScale1(cCommandStream *pThis, void *pContext, int argc, char **argv) { pThis->printf("getscale1\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdGetScale2(cCommandStream *pThis, void *pContext, int argc, char **argv) { pThis->printf("getscale2\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdCalibrateZeroScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv) { ReadSensors(false, true); config_data.cal_w1_0 = last_sensor_reading.weight1; gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data)); pThis->printf("{ \"msg\": \"calibrate_zero_scale_a was successful\" }\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdCalibrateZeroScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv) { ReadSensors(false, true); config_data.cal_w2_0 = last_sensor_reading.weight2; gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data)); pThis->printf("{ \"msg\": \"calibrate_zero_scale_b was successful\" }\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdCalibrateScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv) { ReadSensors(false, true); String w1_gramm(argv[1]); config_data.cal_w1_factor = (((float)last_sensor_reading.weight1 - config_data.cal_w1_0) / w1_gramm.toFloat()); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.SafePrintf("last_sensor_reading.weight1: %ld\n", last_sensor_reading.weight1); gCatena.SafePrintf("config_data.cal_w1_0: %ld\n", config_data.cal_w1_0); gCatena.SafePrintf("w1_gramm: %s\n", w1_gramm); gCatena.SafePrintf("w1_gramm (float): %d\n", (int)w1_gramm.toFloat()); gCatena.SafePrintf("config_data.cal_w1_factor: %d\n", (int)config_data.cal_w1_factor); pThis->printf("{ \"msg\": \"calibrate_scale_a was successful\" }\n"); return cCommandStream::CommandStatus::kSuccess; } cCommandStream::CommandStatus cmdCalibrateScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv) { ReadSensors(false, true); String w2_gramm(argv[1]); config_data.cal_w2_factor = (((float)last_sensor_reading.weight2 - config_data.cal_w2_0) / w2_gramm.toFloat()); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data)); pThis->printf("{ \"msg\": \"calibrate_scale_b was successful\" }\n"); return cCommandStream::CommandStatus::kSuccess; }