1216 lines
36 KiB
C++
1216 lines
36 KiB
C++
/*
|
|
|
|
mini-beieli-node.ino
|
|
|
|
BeieliScale, see https://mini-beieli.ch
|
|
|
|
Joerg Lehmann, nbit Informatik GmbH
|
|
|
|
*/
|
|
|
|
#include <Catena.h>
|
|
|
|
#include <Catena_Led.h>
|
|
#include <Catena_CommandStream.h>
|
|
#include <Catena_Mx25v8035f.h>
|
|
|
|
#include <Wire.h>
|
|
#include <Adafruit_Sensor.h>
|
|
#include <Adafruit_BME280.h>
|
|
#include <Arduino_LoRaWAN.h>
|
|
#include <lmic.h>
|
|
#include <hal/hal.h>
|
|
#include <mcciadk_baselib.h>
|
|
|
|
#include <cmath>
|
|
#include <type_traits>
|
|
|
|
#include <HX711.h>
|
|
#include "mini_beieli_node.h"
|
|
|
|
using namespace McciCatena;
|
|
|
|
// forwards
|
|
static void settleDoneCb(osjob_t* pSendJob);
|
|
static void warmupDoneCb(osjob_t* pSendJob);
|
|
static void startNewIterationCb(osjob_t* pJob);
|
|
static void txNotProvisionedCb(osjob_t *pSendJob);
|
|
static void sleepDoneCb(osjob_t* pSendJob);
|
|
static Arduino_LoRaWAN::SendBufferCbFn sendBufferDoneCb;
|
|
static Arduino_LoRaWAN::ReceivePortBufferCbFn receiveMessage;
|
|
|
|
// Additional Commands
|
|
// forward reference to the command function
|
|
cCommandStream::CommandFn cmdHello;
|
|
cCommandStream::CommandFn cmdGetCalibrationSettings;
|
|
cCommandStream::CommandFn cmdGetSensorReadings;
|
|
cCommandStream::CommandFn cmdGetScaleA;
|
|
cCommandStream::CommandFn cmdGetScaleB;
|
|
cCommandStream::CommandFn cmdCalibrateZeroScaleA;
|
|
cCommandStream::CommandFn cmdCalibrateZeroScaleB;
|
|
cCommandStream::CommandFn cmdCalibrateScaleA;
|
|
cCommandStream::CommandFn cmdCalibrateScaleB;
|
|
cCommandStream::CommandFn cmdSetDebugLevel;
|
|
cCommandStream::CommandFn cmdGetDebugLevel;
|
|
cCommandStream::CommandFn cmdStopIterations;
|
|
|
|
// the individual commmands are put in this table
|
|
static const cCommandStream::cEntry sMyExtraCommmands[] =
|
|
{
|
|
{ "hello", cmdHello },
|
|
{ "get_calibration_settings", cmdGetCalibrationSettings },
|
|
{ "get_sensor_readings", cmdGetSensorReadings },
|
|
{ "calibrate_zero_scale_a", cmdCalibrateZeroScaleA },
|
|
{ "calibrate_zero_scale_b", cmdCalibrateZeroScaleB },
|
|
{ "calibrate_scale_a", cmdCalibrateScaleA },
|
|
{ "calibrate_scale_b", cmdCalibrateScaleB },
|
|
{ "set_debug_level", cmdSetDebugLevel },
|
|
{ "get_debug_level", cmdGetDebugLevel },
|
|
{ "stop_iterations", cmdStopIterations },
|
|
// other commands go here....
|
|
};
|
|
|
|
/* a top-level structure wraps the above and connects to the system table */
|
|
/* it optionally includes a "first word" so you can for sure avoid name clashes */
|
|
static cCommandStream::cDispatch
|
|
sMyExtraCommands_top(
|
|
sMyExtraCommmands, /* this is the pointer to the table */
|
|
sizeof(sMyExtraCommmands), /* this is the size of the table */
|
|
"application" /* this is the "first word" for all the commands in this table*/
|
|
);
|
|
|
|
|
|
/****************************************************************************\
|
|
|
|
|
| VARIABLES
|
|
|
|
|
\****************************************************************************/
|
|
|
|
byte my_position = 0; // what is our actual measurement, starts with 0
|
|
long timer_pos0;
|
|
|
|
// Global Variables
|
|
LORA_data lora_data;
|
|
LORA_data_first lora_data_first;
|
|
CONFIG_data config_data;
|
|
SENSOR_data last_sensor_reading;
|
|
long iteration = 0; // what iteration number do we have, starts with 0
|
|
long package_counter = 0; // sent package counter
|
|
bool send_in_progress = false;
|
|
bool stop_iterations = false;
|
|
bool next_package_is_init_package = true;
|
|
uint32_t gRebootMs;
|
|
|
|
// generic timer
|
|
long t_cur;
|
|
|
|
// the primary object
|
|
Catena gCatena;
|
|
|
|
//
|
|
// the LoRaWAN backhaul. Note that we use the
|
|
// Catena version so it can provide hardware-specific
|
|
// information to the base class.
|
|
//
|
|
Catena::LoRaWAN gLoRaWAN;
|
|
|
|
//
|
|
// the LED
|
|
StatusLed gLed(Catena::PIN_STATUS_LED);
|
|
|
|
// The temperature/humidity sensor
|
|
Adafruit_BME280 gBME280; // The default initalizer creates an I2C connection
|
|
bool fBme;
|
|
|
|
SPIClass gSPI2(
|
|
Catena::PIN_SPI2_MOSI,
|
|
Catena::PIN_SPI2_MISO,
|
|
Catena::PIN_SPI2_SCK);
|
|
|
|
// The flash
|
|
Catena_Mx25v8035f gFlash;
|
|
bool fFlash;
|
|
|
|
// Scales
|
|
HX711 LoadCell;
|
|
|
|
// USB power
|
|
bool fUsbPower;
|
|
|
|
// have we printed the sleep info?
|
|
bool g_fPrintedSleeping = false;
|
|
|
|
// the job that's used to synchronize us with the LMIC code
|
|
static osjob_t iterationJob;
|
|
static osjob_t sendJob;
|
|
|
|
void setup(void)
|
|
{
|
|
gCatena.begin();
|
|
|
|
// Use D10 to regulate power
|
|
pinMode(D10, OUTPUT);
|
|
|
|
setup_platform();
|
|
ClearLoraData();
|
|
setup_bme280();
|
|
//setup_scales();
|
|
|
|
setup_flash();
|
|
setup_uplink();
|
|
}
|
|
|
|
void setup_platform(void)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_platform\n", millis());
|
|
}
|
|
|
|
/* add our application-specific commands */
|
|
gCatena.addCommands(
|
|
sMyExtraCommands_top,
|
|
nullptr
|
|
);
|
|
|
|
// read config_data from fram...
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - Reading Calibration Config from FRAM...\n", millis());
|
|
}
|
|
gCatena.getFram()->getField(cFramStorage::kBme680Cal, (uint8_t *)&config_data, sizeof(config_data));
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_platform, this is the configuration\n", millis());
|
|
gCatena.SafePrintf("cal_w1_0: %d\n", config_data.cal_w1_0);
|
|
gCatena.SafePrintf("cal_w2_0: %d\n", config_data.cal_w2_0);
|
|
gCatena.SafePrintf("cal_w1_factor: %d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000);
|
|
gCatena.SafePrintf("cal_w2_factor: %d.%03d\n", (int)config_data.cal_w2_factor, (int)abs(config_data.cal_w2_factor * 1000) % 1000);
|
|
gCatena.SafePrintf("debug_level: %d\n", (int)config_data.debug_level);
|
|
}
|
|
|
|
|
|
#ifdef USBCON
|
|
// if running unattended, don't wait for USB connect.
|
|
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fUnattended))) {
|
|
while (!Serial)
|
|
/* wait for USB attach */
|
|
yield();
|
|
}
|
|
#endif
|
|
|
|
gCatena.SafePrintf("\n");
|
|
gCatena.SafePrintf("-------------------------------------------------------------------------------\n");
|
|
gCatena.SafePrintf("mini-beieli.ch - BeieliScale Version %d.\n", fwVersion);
|
|
{
|
|
char sRegion[16];
|
|
gCatena.SafePrintf("Target network: %s / %s\n",
|
|
gLoRaWAN.GetNetworkName(),
|
|
gLoRaWAN.GetRegionString(sRegion, sizeof(sRegion)));
|
|
}
|
|
gCatena.SafePrintf("Enter 'help' for a list of commands.\n");
|
|
|
|
#ifdef CATENA_CFG_SYSCLK
|
|
gCatena.SafePrintf("SYSCLK: %d MHz\n", CATENA_CFG_SYSCLK);
|
|
#endif
|
|
|
|
#ifdef USBCON
|
|
gCatena.SafePrintf("USB enabled\n");
|
|
#else
|
|
gCatena.SafePrintf("USB disabled\n");
|
|
#endif
|
|
|
|
Catena::UniqueID_string_t CpuIDstring;
|
|
|
|
gCatena.SafePrintf(
|
|
"CPU Unique ID: %s\n",
|
|
gCatena.GetUniqueIDstring(&CpuIDstring));
|
|
|
|
gCatena.SafePrintf("--------------------------------------------------------------------------------\n");
|
|
gCatena.SafePrintf("\n");
|
|
|
|
// set up the LED
|
|
gLed.begin();
|
|
gCatena.registerObject(&gLed);
|
|
gLed.Set(LedPattern::Off);
|
|
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::FastFlash);
|
|
}
|
|
|
|
// set up LoRaWAN
|
|
gCatena.SafePrintf("LoRaWAN init: ");
|
|
if (!gLoRaWAN.begin(&gCatena)) {
|
|
gCatena.SafePrintf("failed\n");
|
|
}
|
|
else {
|
|
gCatena.SafePrintf("succeeded\n");
|
|
}
|
|
|
|
gLoRaWAN.SetReceiveBufferBufferCb(receiveMessage);
|
|
gCatena.registerObject(&gLoRaWAN);
|
|
|
|
/* find the platform */
|
|
const Catena::EUI64_buffer_t* pSysEUI = gCatena.GetSysEUI();
|
|
|
|
uint32_t flags;
|
|
const CATENA_PLATFORM* const pPlatform = gCatena.GetPlatform();
|
|
|
|
if (pPlatform) {
|
|
gCatena.SafePrintf("EUI64: ");
|
|
for (unsigned i = 0; i < sizeof(pSysEUI->b); ++i) {
|
|
gCatena.SafePrintf("%s%02x", i == 0 ? "" : "-", pSysEUI->b[i]);
|
|
}
|
|
gCatena.SafePrintf("\n");
|
|
flags = gCatena.GetPlatformFlags();
|
|
gCatena.SafePrintf(
|
|
"Platform Flags: %#010x\n",
|
|
flags);
|
|
gCatena.SafePrintf(
|
|
"Operating Flags: %#010x\n",
|
|
gCatena.GetOperatingFlags());
|
|
}
|
|
else {
|
|
gCatena.SafePrintf("**** no platform, check provisioning ****\n");
|
|
flags = 0;
|
|
}
|
|
|
|
}
|
|
|
|
void setup_bme280(void)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_bme280\n", millis());
|
|
}
|
|
|
|
if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep)) {
|
|
fBme = true;
|
|
}
|
|
else {
|
|
fBme = false;
|
|
gCatena.SafePrintf("No BME280 found: check wiring\n");
|
|
}
|
|
}
|
|
|
|
bool setup_scales(void)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_scales\n", millis());
|
|
}
|
|
|
|
bool res;
|
|
res = true;
|
|
|
|
// Enable Power
|
|
digitalWrite(D10, HIGH);
|
|
|
|
// Initialize library with data output pin, clock input pin and gain factor.
|
|
// Channel selection is made by passing the appropriate gain:
|
|
// - With a gain factor of 64 or 128, channel A is selected
|
|
// - With a gain factor of 32, channel B is selected
|
|
// By omitting the gain factor parameter, the library
|
|
// default "128" (Channel A) is used here.
|
|
LoadCell.begin(A1, A0, 32);
|
|
|
|
if (!(LoadCell.wait_ready_timeout(2000))) {
|
|
gCatena.SafePrintf("%010d - Scale not ready after Init.\n");
|
|
res = false;
|
|
}
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_scale done\n", millis());
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void setup_flash(void)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_flash\n", millis());
|
|
}
|
|
|
|
if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS)) {
|
|
fFlash = true;
|
|
gFlash.powerDown();
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - FLASH found, but power down\n", millis());
|
|
}
|
|
}
|
|
else {
|
|
fFlash = false;
|
|
gFlash.end();
|
|
gSPI2.end();
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - No FLASH found: check hardware\n", millis());
|
|
}
|
|
}
|
|
}
|
|
|
|
void setup_uplink(void)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - setup_uplink\n", millis());
|
|
}
|
|
|
|
LMIC_setClockError(1*65536/100);
|
|
|
|
/* figure out when to reboot */
|
|
gRebootMs = (CATCFG_T_REBOOT + os_getRndU2() - 32768) * 1000;
|
|
|
|
|
|
// Do an unjoin, so every reboot will trigger a join
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - do an unjoin...\n", millis());
|
|
}
|
|
LMIC_unjoin();
|
|
|
|
/* trigger a join by sending the first packet */
|
|
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest))) {
|
|
if (!gLoRaWAN.IsProvisioned())
|
|
gCatena.SafePrintf("%010d - LoRaWAN not provisioned yet. Use the commands to set it up.\n");
|
|
else {
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::Joining);
|
|
}
|
|
|
|
/* trigger a join by sending the first packet */
|
|
StartNewIteration();
|
|
}
|
|
}
|
|
}
|
|
|
|
// The Arduino loop routine -- in our case, we just drive the other loops.
|
|
// If we try to do too much, we can break the LMIC radio. So the work is
|
|
// done by outcalls scheduled from the LMIC os loop.
|
|
void loop()
|
|
{
|
|
gCatena.poll();
|
|
}
|
|
|
|
void ClearLoraData(void)
|
|
{
|
|
lora_data.version = LORA_DATA_VERSION;
|
|
lora_data.vbat = 0;
|
|
lora_data.temperature = 0;
|
|
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
|
lora_data.humidity[i] = 0;
|
|
lora_data.pressure[i] = 0;
|
|
lora_data.weight[i] = 0;
|
|
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
|
lora_data.temperature_change[i] = 0;
|
|
}
|
|
}
|
|
|
|
lora_data_first.version = LORA_DATA_VERSION_FIRST_PACKAGE;
|
|
lora_data_first.fw_version = fwVersion;
|
|
lora_data_first.vbat = 0;
|
|
lora_data_first.humidity = 0;
|
|
lora_data_first.pressure = 0;
|
|
lora_data_first.weight1 = 0;
|
|
lora_data_first.weight2 = 0;
|
|
lora_data_first.cal_w1_0 = config_data.cal_w1_0;
|
|
lora_data_first.cal_w2_0 = config_data.cal_w2_0;
|
|
lora_data_first.cal_w1_factor = config_data.cal_w1_factor;
|
|
lora_data_first.cal_w2_factor = config_data.cal_w2_factor;
|
|
lora_data_first.temperature = 0;
|
|
|
|
my_position = 0;
|
|
|
|
// We initialize last_sensor_reading
|
|
last_sensor_reading.vbat = 0;
|
|
last_sensor_reading.weight1 = 0;
|
|
last_sensor_reading.weight2 = 0;
|
|
last_sensor_reading.weight = 0;
|
|
last_sensor_reading.temperature = 0;
|
|
last_sensor_reading.humidity = 0;
|
|
last_sensor_reading.pressure = 0;
|
|
}
|
|
|
|
void ShowLORAData(bool firstTime)
|
|
{
|
|
gCatena.SafePrintf("%010d - ShowLORAData\n", millis());
|
|
|
|
if (firstTime) {
|
|
|
|
gCatena.SafePrintf("{\n");
|
|
gCatena.SafePrintf(" \"version\": \"%d\",\n", lora_data_first.version);
|
|
gCatena.SafePrintf(" \"fw_version\": \"%d\",\n", lora_data_first.fw_version);
|
|
gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data_first.vbat);
|
|
gCatena.SafePrintf(" \"humidity\": \"%u\",\n", lora_data_first.humidity);
|
|
gCatena.SafePrintf(" \"pressure\": \"%u\",\n", lora_data_first.pressure);
|
|
gCatena.SafePrintf(" \"weight1\": \"%ld\",\n", lora_data_first.weight1);
|
|
gCatena.SafePrintf(" \"weight2\": \"%ld\",\n", lora_data_first.weight2);
|
|
gCatena.SafePrintf(" \"cal_w1_0\": \"%ld\",\n", lora_data_first.cal_w1_0);
|
|
gCatena.SafePrintf(" \"cal_w2_0\": \"%ld\",\n", lora_data_first.cal_w2_0);
|
|
gCatena.SafePrintf(" \"cal_w1_factor\": \"%d.%03d\",\n", (int)lora_data_first.cal_w1_factor, (int)abs(lora_data_first.cal_w1_factor * 1000) % 1000);
|
|
gCatena.SafePrintf(" \"cal_w2_factor\": \"%d.%03d\",\n", (int)lora_data_first.cal_w2_factor, (int)abs(lora_data_first.cal_w2_factor * 1000) % 1000);
|
|
gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data_first.temperature);
|
|
gCatena.SafePrintf("}\n");
|
|
|
|
} else {
|
|
|
|
gCatena.SafePrintf("{\n");
|
|
gCatena.SafePrintf(" \"version\": \"%d\",\n", lora_data.version);
|
|
gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data.vbat);
|
|
gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data.temperature);
|
|
gCatena.SafePrintf(" \"humidity\": [");
|
|
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
|
gCatena.SafePrintf("%d", lora_data.humidity[i]);
|
|
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
|
gCatena.SafePrintf(",");
|
|
}
|
|
}
|
|
gCatena.SafePrintf("],\n");
|
|
gCatena.SafePrintf(" \"pressure\": [");
|
|
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
|
gCatena.SafePrintf("%d", lora_data.pressure[i]);
|
|
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
|
gCatena.SafePrintf(",");
|
|
}
|
|
}
|
|
gCatena.SafePrintf("],\n");
|
|
gCatena.SafePrintf(" \"weight\": [");
|
|
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
|
|
gCatena.SafePrintf("%ld", lora_data.weight[i]);
|
|
if (i < (MAX_VALUES_TO_SEND - 1)) {
|
|
gCatena.SafePrintf(",");
|
|
}
|
|
}
|
|
gCatena.SafePrintf("],\n");
|
|
gCatena.SafePrintf(" \"temperature_change\": [");
|
|
for (int i = 0; i < MAX_VALUES_TO_SEND - 1; i++) {
|
|
gCatena.SafePrintf("%d", lora_data.temperature_change[i]);
|
|
if (i < (MAX_VALUES_TO_SEND - 2)) {
|
|
gCatena.SafePrintf(",");
|
|
}
|
|
}
|
|
gCatena.SafePrintf("]\n");
|
|
gCatena.SafePrintf("}\n");
|
|
|
|
}
|
|
}
|
|
|
|
uint8_t GetVBatValue(int millivolts)
|
|
{
|
|
uint8_t res;
|
|
if (millivolts <= 2510) {
|
|
res = 0;
|
|
|
|
} else if (millivolts >= 4295) {
|
|
res = 255;
|
|
|
|
} else {
|
|
res = (millivolts - 2510) / 7;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void DoDeepSleep(uint32_t sleep_time)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - now going to deep sleep\n", millis());
|
|
}
|
|
|
|
// Prepare Deep Sleep
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::Off);
|
|
}
|
|
|
|
Serial.end();
|
|
Wire.end();
|
|
SPI.end();
|
|
if (fFlash)
|
|
gSPI2.end();
|
|
|
|
// Now sleeping...
|
|
gCatena.Sleep(sleep_time);
|
|
|
|
// Recover from wakeup...
|
|
Serial.begin();
|
|
Wire.begin();
|
|
SPI.begin();
|
|
if (fFlash)
|
|
gSPI2.begin();
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - done with deep sleep\n", millis());
|
|
}
|
|
}
|
|
|
|
//Following functions are based on "https://github.com/dndubins/QuickStats", by David Dubins
|
|
|
|
long median(long samples[], int m) //calculate the median
|
|
{
|
|
//First bubble sort the values: https://en.wikipedia.org/wiki/Bubble_sort
|
|
long sorted[m]; // Define and initialize sorted array.
|
|
long temp = 0; // Temporary float for swapping elements
|
|
|
|
for (int i = 0; i < m; i++) {
|
|
sorted[i] = samples[i];
|
|
}
|
|
bubbleSort(sorted, m); // Sort the values
|
|
|
|
if (bitRead(m, 0) == 1) { //If the last bit of a number is 1, it's odd. This is equivalent to "TRUE". Also use if m%2!=0.
|
|
return sorted[m / 2]; //If the number of data points is odd, return middle number.
|
|
} else {
|
|
return (sorted[(m / 2) - 1] + sorted[m / 2]) / 2; //If the number of data points is even, return avg of the middle two numbers.
|
|
}
|
|
}
|
|
|
|
void bubbleSort(long A[], int len) {
|
|
unsigned long newn;
|
|
unsigned long n = len;
|
|
long temp = 0;
|
|
do {
|
|
newn = 1;
|
|
for (int p = 1; p < len; p++) {
|
|
if (A[p - 1] > A[p]) {
|
|
temp = A[p]; //swap places in array
|
|
A[p] = A[p - 1];
|
|
A[p - 1] = temp;
|
|
newn = p;
|
|
} //end if
|
|
} //end for
|
|
n = newn;
|
|
} while (n > 1);
|
|
}
|
|
|
|
long my_read_average(byte gain, byte times) {
|
|
long res;
|
|
int const num_scale_readings = 25; // number of instantaneous scale readings to calculate the median
|
|
|
|
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
|
|
long readings[num_scale_readings]; // create arry to hold readings
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - my_read_average, measurements: ", millis());
|
|
}
|
|
|
|
LoadCell.set_gain(gain);
|
|
// we wait 400ms (settling time according HX711 datasheet @ 10 SPS
|
|
delay(400);
|
|
|
|
for (int i = 0; i < num_scale_readings; i++) {
|
|
readings[i] = LoadCell.read(); // fill the array with instantaneous readings from the scale
|
|
}
|
|
|
|
res = median(readings, num_scale_readings); // calculate median
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("; median of %d samples: %d\n", num_scale_readings, res);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void ReadSensors(SENSOR_data &sensor_data) {
|
|
SENSOR_data res;
|
|
int32_t weight_current32;
|
|
|
|
// vBat
|
|
gCatena.poll();
|
|
int vbat_mv = (int)(gCatena.ReadVbat() * 1000.0f);
|
|
res.vbat = GetVBatValue(vbat_mv);
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - vBat: %d mV\n", millis(), vbat_mv);
|
|
}
|
|
|
|
// Read Scales
|
|
if (setup_scales()) {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - HX711 LoadCell is ready.\n", millis());
|
|
}
|
|
gCatena.poll();
|
|
res.weight1 = (int32_t)my_read_average(32, 7);
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - Load_cell 1 weight1_current: %ld\n", millis(), res.weight1);
|
|
}
|
|
gCatena.poll();
|
|
res.weight2 = (int32_t)my_read_average(128, 7);
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - Load_cell 2 weight2_current: %ld\n", millis(), res.weight2);
|
|
}
|
|
}
|
|
else {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - HX711 LoadCell not ready.\n", millis());
|
|
}
|
|
}
|
|
|
|
// Disable Power
|
|
gCatena.poll();
|
|
digitalWrite(D10, LOW);
|
|
|
|
// Gewicht berechnen
|
|
weight_current32 = (int32_t)((((res.weight1 - config_data.cal_w1_0) / config_data.cal_w1_factor) + ((res.weight2 - config_data.cal_w2_0) / config_data.cal_w2_factor)) / 5.0);
|
|
if (weight_current32 < 0) {
|
|
weight_current32 = 0;
|
|
} else if (weight_current32 > UINT16_MAX) {
|
|
//weight_current32 = UINT16_MAX;
|
|
// we set the weight to 0, as such high values are not realistic and probably a sign for bad calibration...
|
|
weight_current32 = 0;
|
|
}
|
|
res.weight = (uint16_t)weight_current32;
|
|
|
|
if (fBme) {
|
|
gCatena.poll();
|
|
/* warm up the BME280 by discarding a measurement */
|
|
(void)gBME280.readTemperature();
|
|
|
|
gCatena.poll();
|
|
Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity();
|
|
// temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C
|
|
// pressure is 2 bytes, hPa * 10.
|
|
// humidity is one byte, where 0 == 0/256 and 0xFF == 255/256.
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf(
|
|
"%010d - BME280: T: %d P: %d RH: %d\n",
|
|
millis(),
|
|
(int)m.Temperature,
|
|
(int)m.Pressure,
|
|
(int)m.Humidity);
|
|
}
|
|
res.temperature = (int16_t)((m.Temperature) * 10);
|
|
res.humidity = (uint8_t)m.Humidity;
|
|
res.pressure = (uint8_t)((m.Pressure / 100) - PRESSURE_OFFSET);
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - pressure_current: %d\n", millis(), res.pressure);
|
|
}
|
|
}
|
|
|
|
sensor_data = res;
|
|
}
|
|
|
|
void StartNewIteration() {
|
|
uint32_t wait_time;
|
|
wait_time = 0;
|
|
|
|
// we increment the iteration counter
|
|
iteration++;
|
|
|
|
SENSOR_data current_sensor_reading;
|
|
ReadSensors(current_sensor_reading);
|
|
int16_t temp_change;
|
|
|
|
// vBus
|
|
float vBus = gCatena.ReadVbus();
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - vBus: %d mV\n", millis(), (int)(vBus * 1000.0f));
|
|
}
|
|
fUsbPower = (vBus > 4.3) ? true : false;
|
|
|
|
if (next_package_is_init_package) {
|
|
lora_data_first.vbat = current_sensor_reading.vbat;
|
|
lora_data_first.weight1 = current_sensor_reading.weight1;
|
|
lora_data_first.weight2 = current_sensor_reading.weight2;
|
|
lora_data_first.temperature = current_sensor_reading.temperature;
|
|
lora_data_first.humidity = current_sensor_reading.humidity;
|
|
lora_data_first.pressure = current_sensor_reading.pressure;
|
|
} else {
|
|
lora_data.vbat = current_sensor_reading.vbat;
|
|
lora_data.weight[my_position] = current_sensor_reading.weight;
|
|
if (my_position == 0) {
|
|
lora_data.temperature = current_sensor_reading.temperature;
|
|
} else {
|
|
temp_change = current_sensor_reading.temperature - last_sensor_reading.temperature;
|
|
if (temp_change > 127) {
|
|
temp_change = 127;
|
|
}
|
|
if (temp_change < -128) {
|
|
temp_change = -128;
|
|
}
|
|
lora_data.temperature_change[my_position - 1] = (uint8_t)temp_change;
|
|
}
|
|
lora_data.humidity[my_position] = current_sensor_reading.humidity;
|
|
lora_data.pressure[my_position] = current_sensor_reading.pressure;
|
|
}
|
|
|
|
if (my_position == 0) {
|
|
timer_pos0 = millis();
|
|
}
|
|
|
|
if (config_data.debug_level > 0) {
|
|
ShowLORAData(next_package_is_init_package);
|
|
}
|
|
my_position++;
|
|
|
|
// Should we send the Data?
|
|
// we send data the first time the system is started, when the array is full
|
|
// or when the weight has fallen more than threshold or the first measurement is
|
|
// more than one hour old (which should not happen :-) )
|
|
if ( (next_package_is_init_package) || (my_position >= MAX_VALUES_TO_SEND) || ((last_sensor_reading.weight - current_sensor_reading.weight) > SEND_DIFF_THRESHOLD_5GRAMS) || ((millis() - timer_pos0) > 3600000)) {
|
|
lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60);
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - startSendingUplink(), my_position: %d, iteration: %d, package_counter: %d\n", millis(), my_position, iteration, package_counter);
|
|
}
|
|
// the first 12 packets are "Init-Packets" or each INIT_PACKAGE_INTERVAL ...
|
|
startSendingUplink(next_package_is_init_package);
|
|
next_package_is_init_package = ((iteration < 12) || ((package_counter % INIT_PACKAGE_INTERVAL) == 0));
|
|
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::TwoShort);
|
|
}
|
|
|
|
// Loop while sending is in progress, timeout just in case after 300 seconds
|
|
long start_time = millis();
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - waiting while send is in progress\n", millis());
|
|
}
|
|
while (send_in_progress && ((millis() - start_time) < 300000))
|
|
{
|
|
gCatena.poll();
|
|
yield();
|
|
}
|
|
wait_time = (uint32_t)((millis() - start_time) / 1000);
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - end waiting, wait time was %d seconds\n", millis(), wait_time);
|
|
}
|
|
}
|
|
|
|
if (not(next_package_is_init_package)) {
|
|
// we make the current sensor reading to the last one...
|
|
last_sensor_reading = current_sensor_reading;
|
|
}
|
|
|
|
uint32_t sleep_time_sec;
|
|
if (wait_time < CATCFG_T_INTERVAL) {
|
|
sleep_time_sec = CATCFG_T_INTERVAL - wait_time;
|
|
} else {
|
|
// minimal sleep time is 5 seconds
|
|
sleep_time_sec = 5;
|
|
}
|
|
|
|
// for the first 12 iterations, we set the sleep time to 10 seconds only...
|
|
if (iteration <= 12) {
|
|
sleep_time_sec = 10;
|
|
}
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - now going to sleep for %d seconds...\n", millis(), sleep_time_sec);
|
|
if (fUsbPower) {
|
|
gCatena.SafePrintf("%010d - USB Power is on\n", millis());
|
|
} else {
|
|
gCatena.SafePrintf("%010d - USB Power is off\n", millis());
|
|
}
|
|
//Serial.flush();
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::Sleeping);
|
|
}
|
|
}
|
|
|
|
if (!fUsbPower) {
|
|
DoDeepSleep(sleep_time_sec);
|
|
os_setTimedCallback(
|
|
&iterationJob,
|
|
os_getTime() + sec2osticks(2),
|
|
startNewIterationCb);
|
|
}
|
|
else {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - light sleep; os_setTimedCallback for startNewIterationCb in %d...seconds\n", millis(), sleep_time_sec);
|
|
}
|
|
os_setTimedCallback(
|
|
&iterationJob,
|
|
os_getTime() + sec2osticks(sleep_time_sec),
|
|
startNewIterationCb);
|
|
}
|
|
}
|
|
|
|
void startSendingUplink(bool firstTime)
|
|
{
|
|
send_in_progress = true;
|
|
|
|
LedPattern savedLed;
|
|
if (config_data.debug_level > 1) {
|
|
savedLed = gLed.Set(LedPattern::Measuring);
|
|
}
|
|
|
|
if (config_data.debug_level > 1) {
|
|
if (savedLed != LedPattern::Joining)
|
|
gLed.Set(LedPattern::Sending);
|
|
else
|
|
gLed.Set(LedPattern::Joining);
|
|
}
|
|
|
|
bool fConfirmed = false;
|
|
if (gCatena.GetOperatingFlags() & (1 << 16)) {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("requesting confirmed tx\n");
|
|
}
|
|
fConfirmed = true;
|
|
}
|
|
|
|
if (firstTime) {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - SendBuffer firstTime\n", millis());
|
|
}
|
|
gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
|
|
package_counter++;
|
|
} else {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - SendBuffer not firstTime\n", millis());
|
|
}
|
|
gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
|
|
package_counter++;
|
|
}
|
|
|
|
ClearLoraData();
|
|
}
|
|
|
|
static void sendBufferDoneCb(
|
|
void* pContext,
|
|
bool fStatus)
|
|
{
|
|
osjobcb_t pFn;
|
|
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::Settling);
|
|
}
|
|
|
|
pFn = settleDoneCb;
|
|
if (! fStatus)
|
|
{
|
|
if (!gLoRaWAN.IsProvisioned())
|
|
{
|
|
// we'll talk about it at the callback.
|
|
pFn = txNotProvisionedCb;
|
|
|
|
// but prevent join attempts now.
|
|
gLoRaWAN.Shutdown();
|
|
}
|
|
else if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - send buffer failed\n", millis());
|
|
}
|
|
}
|
|
|
|
os_setTimedCallback(
|
|
&sendJob,
|
|
os_getTime() + sec2osticks(CATCFG_T_SETTLE),
|
|
pFn
|
|
);
|
|
}
|
|
|
|
static void txNotProvisionedCb(
|
|
osjob_t *pSendJob
|
|
)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("LoRaWAN not provisioned yet. Use the commands to set it up.\n");
|
|
}
|
|
gLoRaWAN.Shutdown();
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::NotProvisioned);
|
|
}
|
|
}
|
|
|
|
|
|
static void settleDoneCb(
|
|
osjob_t* pSendJob)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - settleDoneCb\n", millis());
|
|
}
|
|
|
|
if (config_data.debug_level > 2) {
|
|
// Terry vv
|
|
gCatena.SafePrintf("LMIC.rxDelay: %i\n", LMIC.rxDelay);
|
|
gCatena.SafePrintf("LMIC.dn2Dr: %i\n", LMIC.dn2Dr);
|
|
gCatena.SafePrintf("LMIC.dn2Freq: %i\n", LMIC.dn2Freq);
|
|
gCatena.SafePrintf("LMIC.rx1DrOffset: %i\n", LMIC.rx1DrOffset);
|
|
gCatena.SafePrintf("LMIC.adrAckReq: %i\n", LMIC.adrAckReq);
|
|
gCatena.SafePrintf("LMIC.adrEnabled: %i\n", LMIC.adrEnabled);
|
|
// Terry ^^
|
|
}
|
|
|
|
if (uint32_t(millis()) > gRebootMs) {
|
|
// time to reboot
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
sleepDoneCb(pSendJob);
|
|
}
|
|
|
|
static void sleepDoneCb(osjob_t* pJob)
|
|
{
|
|
if (config_data.debug_level > 1) {
|
|
gLed.Set(LedPattern::WarmingUp);
|
|
}
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - sleepDoneCb\n", millis());
|
|
}
|
|
|
|
os_setTimedCallback(
|
|
pJob,
|
|
os_getTime() + sec2osticks(CATCFG_T_WARMUP),
|
|
warmupDoneCb);
|
|
}
|
|
|
|
static void warmupDoneCb(osjob_t* pJob)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - warmupDoneCb\n", millis());
|
|
}
|
|
send_in_progress = false;
|
|
}
|
|
|
|
static void startNewIterationCb(osjob_t* pJob)
|
|
{
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - startNewIterationCb\n", millis());
|
|
}
|
|
|
|
if (! stop_iterations) {
|
|
StartNewIteration();
|
|
}
|
|
}
|
|
|
|
static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage)
|
|
{
|
|
long cal_w1_0;
|
|
long cal_w2_0;
|
|
float cal_w1_factor;
|
|
float cal_w2_factor;
|
|
|
|
union u_tag {
|
|
byte b[4];
|
|
float fval;
|
|
} u;
|
|
|
|
SENSOR_data temp_sensor_data;
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("%010d - receiveMessage was called!!!\n", millis());
|
|
}
|
|
|
|
if (config_data.debug_level > 2) {
|
|
// Terry vv
|
|
if (port == 0)
|
|
{
|
|
gCatena.SafePrintf("MAC message:");
|
|
for (unsigned i = 0; i < LMIC.dataBeg; ++i)
|
|
{
|
|
gCatena.SafePrintf(" %02x", LMIC.frame[i]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
gCatena.SafePrintf("Port: %i\n", port);
|
|
gCatena.SafePrintf("LMIC.rxDelay: %i\n", LMIC.rxDelay);
|
|
gCatena.SafePrintf("LMIC.dn2Dr: %i\n", LMIC.dn2Dr);
|
|
gCatena.SafePrintf("LMIC.dn2Freq: %i\n", LMIC.dn2Freq);
|
|
gCatena.SafePrintf("LMIC.rx1DrOffset: %i\n", LMIC.rx1DrOffset);
|
|
// Terry ^^
|
|
}
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("message received port(%02x)/length(%x)\n",
|
|
port, nMessage
|
|
);
|
|
// we print out the received message...
|
|
gCatena.SafePrintf("Current LMIC.seqnoUp: %d\n", LMIC.seqnoUp);
|
|
gCatena.SafePrintf("Received Data (Payload): \n");
|
|
for (byte i = 0; i < nMessage; i++) {
|
|
gCatena.SafePrintf("%02x", pMessage[i]);
|
|
}
|
|
gCatena.SafePrintf("\n");
|
|
}
|
|
|
|
if (LMIC.seqnoUp > 5) {
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("setting calibration config with downlink is only possible within first five uplink packets!\n");
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
if (port == 1 && nMessage == 17) {
|
|
cal_w1_0 = 0;
|
|
cal_w1_0 += (long)pMessage[1] << 24;
|
|
cal_w1_0 += (long)pMessage[2] << 16;
|
|
cal_w1_0 += (long)pMessage[3] << 8;
|
|
cal_w1_0 += (long)pMessage[4];
|
|
|
|
cal_w2_0 = 0;
|
|
cal_w2_0 += (long)pMessage[5] << 24;
|
|
cal_w2_0 += (long)pMessage[6] << 16;
|
|
cal_w2_0 += (long)pMessage[7] << 8;
|
|
cal_w2_0 += (long)pMessage[8];
|
|
|
|
u.b[0] = pMessage[12];
|
|
u.b[1] = pMessage[11];
|
|
u.b[2] = pMessage[10];
|
|
u.b[3] = pMessage[9];
|
|
cal_w1_factor = u.fval;
|
|
|
|
u.b[0] = pMessage[16];
|
|
u.b[1] = pMessage[15];
|
|
u.b[2] = pMessage[14];
|
|
u.b[3] = pMessage[13];
|
|
cal_w2_factor = u.fval;
|
|
|
|
if (pMessage[0] == 0) {
|
|
// set both scales to 0, use transmitted values (offset only)
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("set calibration to zero, cal_w1_0: %d, cal_w2_0: %d\n", cal_w1_0, cal_w2_0);
|
|
}
|
|
|
|
config_data.cal_w1_0 = cal_w1_0;
|
|
config_data.cal_w2_0 = cal_w2_0;
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
lora_data_first.cal_w1_0 = config_data.cal_w1_0;
|
|
lora_data_first.cal_w2_0 = config_data.cal_w2_0;
|
|
}
|
|
|
|
if (pMessage[0] == 1) {
|
|
// update calibration config with transmitted values
|
|
|
|
if (config_data.debug_level > 0) {
|
|
gCatena.SafePrintf("update calibration config, cal_w1_0: %d, cal_w2_0: %d, cal_w1_factor: %d.%03d, cal_w2_factor: %d.%03d\n", cal_w1_0, cal_w2_0, (int)cal_w1_factor, (int)abs(cal_w1_factor * 1000) % 1000, (int)cal_w2_factor, (int)abs(cal_w2_factor * 1000) % 1000);
|
|
}
|
|
|
|
config_data.cal_w1_0 = cal_w1_0;
|
|
config_data.cal_w2_0 = cal_w2_0;
|
|
config_data.cal_w1_factor = cal_w1_factor;
|
|
config_data.cal_w2_factor = cal_w2_factor;
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
|
|
lora_data_first.cal_w1_0 = config_data.cal_w1_0;
|
|
lora_data_first.cal_w2_0 = config_data.cal_w2_0;
|
|
lora_data_first.cal_w1_factor = config_data.cal_w1_factor;
|
|
lora_data_first.cal_w2_factor = config_data.cal_w2_factor;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* process "application hello" -- args are ignored */
|
|
// argv[0] is "hello"
|
|
// argv[1..argc-1] are the (ignored) arguments
|
|
cCommandStream::CommandStatus cmdHello(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
pThis->printf("Hello, world!\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
|
|
cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
pThis->printf("{\n");
|
|
pThis->printf(" \"cal_w1_0\": \"%d\",\n", config_data.cal_w1_0);
|
|
pThis->printf(" \"cal_w2_0\": \"%d\",\n", config_data.cal_w2_0);
|
|
pThis->printf(" \"cal_w1_factor\": \"%d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000);
|
|
pThis->printf(" \"cal_w2_factor\": \"%d.%03d\n", (int)config_data.cal_w2_factor, (int)abs(config_data.cal_w2_factor * 1000) % 1000);
|
|
pThis->printf("}\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdGetSensorReadings(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
SENSOR_data temp_sensor_data;
|
|
|
|
ReadSensors(temp_sensor_data);
|
|
pThis->printf("{\n");
|
|
pThis->printf(" \"weight\": \"%d\",\n", temp_sensor_data.weight);
|
|
pThis->printf(" \"weight1_raw\": \"%d\",\n", temp_sensor_data.weight1);
|
|
pThis->printf(" \"weight2_raw\": \"%d\",\n", temp_sensor_data.weight2);
|
|
pThis->printf(" \"temperature\": \"%d\",\n", temp_sensor_data.temperature);
|
|
pThis->printf(" \"humidity\": \"%d\",\n", temp_sensor_data.humidity);
|
|
pThis->printf(" \"pressure\": \"%d\",\n", temp_sensor_data.pressure);
|
|
pThis->printf(" \"batt\": \"%d\",\n", temp_sensor_data.vbat);
|
|
pThis->printf("}\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdGetScale1(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
pThis->printf("getscale1\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdGetScale2(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
pThis->printf("getscale2\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdCalibrateZeroScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
setup_scales();
|
|
config_data.cal_w1_0 = (int32_t)my_read_average(32, 10);
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
pThis->printf("{ \"msg\": \"calibrate_zero_scale_a was successful\" }\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdCalibrateZeroScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
setup_scales();
|
|
config_data.cal_w2_0 = (int32_t)my_read_average(128, 10);
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
pThis->printf("{ \"msg\": \"calibrate_zero_scale_b was successful\" }\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdCalibrateScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
String w1_gramm(argv[1]);
|
|
long weight1;
|
|
setup_scales();
|
|
weight1 = my_read_average(32, 10);
|
|
config_data.cal_w1_factor = (float)((weight1 - config_data.cal_w1_0) / w1_gramm.toFloat());
|
|
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
|
|
pThis->printf("{ \"msg\": \"calibrate_scale_a was successful\" }\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdCalibrateScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
String w2_gramm(argv[1]);
|
|
long weight2;
|
|
setup_scales();
|
|
weight2 = my_read_average(128, 10);
|
|
config_data.cal_w2_factor = (float)((weight2 - config_data.cal_w2_0) / w2_gramm.toFloat());
|
|
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
|
|
pThis->printf("{ \"msg\": \"calibrate_scale_b was successful\" }\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdSetDebugLevel(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
String s_debug_level(argv[1]);
|
|
config_data.debug_level = s_debug_level.toInt();
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
|
|
pThis->printf("{ \"msg\": \"set_debug_level was successful\" }\n");
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdGetDebugLevel(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
|
|
|
|
pThis->printf("{ \"msg\": \"debug_level is %d\" }\n", config_data.debug_level);
|
|
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|
|
|
|
cCommandStream::CommandStatus cmdStopIterations(cCommandStream *pThis, void *pContext, int argc, char **argv)
|
|
{
|
|
stop_iterations = true;
|
|
return cCommandStream::CommandStatus::kSuccess;
|
|
}
|