mini-beieli-node/mini-beieli-node.ino

1204 lines
36 KiB
C++

/*
mini-beieli-node.ino
BeieliScale, see https://mini-beieli.ch
Joerg Lehmann, nbit Informatik GmbH
*/
#include <Catena.h>
#include <Catena_Led.h>
#include <Catena_CommandStream.h>
#include <Catena_Mx25v8035f.h>
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#include <Arduino_LoRaWAN.h>
#include <lmic.h>
#include <hal/hal.h>
#include <mcciadk_baselib.h>
#include <cmath>
#include <type_traits>
#include <Q2HX711.h>
#include "mini_beieli_node.h"
using namespace McciCatena;
// forwards
static void settleDoneCb(osjob_t* pSendJob);
static void warmupDoneCb(osjob_t* pSendJob);
static void startNewIterationCb(osjob_t* pJob);
static void txNotProvisionedCb(osjob_t *pSendJob);
static void sleepDoneCb(osjob_t* pSendJob);
static Arduino_LoRaWAN::SendBufferCbFn sendBufferDoneCb;
static Arduino_LoRaWAN::ReceivePortBufferCbFn receiveMessage;
// Additional Commands
// forward reference to the command function
cCommandStream::CommandFn cmdHello;
cCommandStream::CommandFn cmdGetCalibrationSettings;
cCommandStream::CommandFn cmdGetSensorReadings;
cCommandStream::CommandFn cmdGetScaleA;
cCommandStream::CommandFn cmdGetScaleB;
cCommandStream::CommandFn cmdCalibrateZeroScaleA;
cCommandStream::CommandFn cmdCalibrateZeroScaleB;
cCommandStream::CommandFn cmdCalibrateScaleA;
cCommandStream::CommandFn cmdCalibrateScaleB;
cCommandStream::CommandFn cmdSetDebugLevel;
cCommandStream::CommandFn cmdGetDebugLevel;
cCommandStream::CommandFn cmdStopIterations;
// the individual commmands are put in this table
static const cCommandStream::cEntry sMyExtraCommmands[] =
{
{ "hello", cmdHello },
{ "get_calibration_settings", cmdGetCalibrationSettings },
{ "get_sensor_readings", cmdGetSensorReadings },
{ "calibrate_zero_scale_a", cmdCalibrateZeroScaleA },
{ "calibrate_zero_scale_b", cmdCalibrateZeroScaleB },
{ "calibrate_scale_a", cmdCalibrateScaleA },
{ "calibrate_scale_b", cmdCalibrateScaleB },
{ "set_debug_level", cmdSetDebugLevel },
{ "get_debug_level", cmdGetDebugLevel },
{ "stop_iterations", cmdStopIterations },
// other commands go here....
};
/* a top-level structure wraps the above and connects to the system table */
/* it optionally includes a "first word" so you can for sure avoid name clashes */
static cCommandStream::cDispatch
sMyExtraCommands_top(
sMyExtraCommmands, /* this is the pointer to the table */
sizeof(sMyExtraCommmands), /* this is the size of the table */
"application" /* this is the "first word" for all the commands in this table*/
);
/****************************************************************************\
|
| VARIABLES
|
\****************************************************************************/
byte my_position = 0; // what is our actual measurement, starts with 0
long timer_pos0;
// Global Variables
LORA_data lora_data;
LORA_data_first lora_data_first;
CONFIG_data config_data;
SENSOR_data last_sensor_reading;
long iteration = 0; // what iteration number do we have, starts with 0
long package_counter = 0; // sent package counter
bool send_in_progress = false;
bool stop_iterations = false;
bool next_package_is_init_package = true;
uint32_t gRebootMs;
// generic timer
long t_cur;
// the primary object
Catena gCatena;
//
// the LoRaWAN backhaul. Note that we use the
// Catena version so it can provide hardware-specific
// information to the base class.
//
Catena::LoRaWAN gLoRaWAN;
//
// the LED
StatusLed gLed(Catena::PIN_STATUS_LED);
// The temperature/humidity sensor
Adafruit_BME280 gBME280; // The default initalizer creates an I2C connection
bool fBme;
SPIClass gSPI2(
Catena::PIN_SPI2_MOSI,
Catena::PIN_SPI2_MISO,
Catena::PIN_SPI2_SCK);
// The flash
Catena_Mx25v8035f gFlash;
bool fFlash;
// Scales
Q2HX711 hx711(A1, A0);
// USB power
bool fUsbPower;
// have we printed the sleep info?
bool g_fPrintedSleeping = false;
// the job that's used to synchronize us with the LMIC code
static osjob_t iterationJob;
static osjob_t sendJob;
void setup(void)
{
gCatena.begin();
// Use D10 to regulate power
pinMode(D10, OUTPUT);
setup_platform();
ClearLoraData();
setup_bme280();
//setup_scales();
setup_flash();
setup_uplink();
}
void setup_platform(void)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_platform\n", millis());
}
/* add our application-specific commands */
gCatena.addCommands(
sMyExtraCommands_top,
nullptr
);
// read config_data from fram...
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - Reading Calibration Config from FRAM...\n", millis());
}
gCatena.getFram()->getField(cFramStorage::kBme680Cal, (uint8_t *)&config_data, sizeof(config_data));
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_platform, this is the configuration\n", millis());
gCatena.SafePrintf("cal_w1_0: %d\n", config_data.cal_w1_0);
gCatena.SafePrintf("cal_w2_0: %d\n", config_data.cal_w2_0);
gCatena.SafePrintf("cal_w1_factor: %d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000);
gCatena.SafePrintf("cal_w2_factor: %d.%03d\n", (int)config_data.cal_w2_factor, (int)abs(config_data.cal_w2_factor * 1000) % 1000);
gCatena.SafePrintf("debug_level: %d\n", (int)config_data.debug_level);
}
#ifdef USBCON
// if running unattended, don't wait for USB connect.
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fUnattended))) {
while (!Serial)
/* wait for USB attach */
yield();
}
#endif
gCatena.SafePrintf("\n");
gCatena.SafePrintf("-------------------------------------------------------------------------------\n");
gCatena.SafePrintf("mini-beieli.ch - BeieliScale Version %d.\n", fwVersion);
{
char sRegion[16];
gCatena.SafePrintf("Target network: %s / %s\n",
gLoRaWAN.GetNetworkName(),
gLoRaWAN.GetRegionString(sRegion, sizeof(sRegion)));
}
gCatena.SafePrintf("Enter 'help' for a list of commands.\n");
#ifdef CATENA_CFG_SYSCLK
gCatena.SafePrintf("SYSCLK: %d MHz\n", CATENA_CFG_SYSCLK);
#endif
#ifdef USBCON
gCatena.SafePrintf("USB enabled\n");
#else
gCatena.SafePrintf("USB disabled\n");
#endif
Catena::UniqueID_string_t CpuIDstring;
gCatena.SafePrintf(
"CPU Unique ID: %s\n",
gCatena.GetUniqueIDstring(&CpuIDstring));
gCatena.SafePrintf("--------------------------------------------------------------------------------\n");
gCatena.SafePrintf("\n");
// set up the LED
gLed.begin();
gCatena.registerObject(&gLed);
gLed.Set(LedPattern::Off);
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::FastFlash);
}
// set up LoRaWAN
gCatena.SafePrintf("LoRaWAN init: ");
if (!gLoRaWAN.begin(&gCatena)) {
gCatena.SafePrintf("failed\n");
}
else {
gCatena.SafePrintf("succeeded\n");
}
gLoRaWAN.SetReceiveBufferBufferCb(receiveMessage);
gCatena.registerObject(&gLoRaWAN);
/* find the platform */
const Catena::EUI64_buffer_t* pSysEUI = gCatena.GetSysEUI();
uint32_t flags;
const CATENA_PLATFORM* const pPlatform = gCatena.GetPlatform();
if (pPlatform) {
gCatena.SafePrintf("EUI64: ");
for (unsigned i = 0; i < sizeof(pSysEUI->b); ++i) {
gCatena.SafePrintf("%s%02x", i == 0 ? "" : "-", pSysEUI->b[i]);
}
gCatena.SafePrintf("\n");
flags = gCatena.GetPlatformFlags();
gCatena.SafePrintf(
"Platform Flags: %#010x\n",
flags);
gCatena.SafePrintf(
"Operating Flags: %#010x\n",
gCatena.GetOperatingFlags());
}
else {
gCatena.SafePrintf("**** no platform, check provisioning ****\n");
flags = 0;
}
}
void setup_bme280(void)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_bme280\n", millis());
}
if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep)) {
fBme = true;
}
else {
fBme = false;
gCatena.SafePrintf("No BME280 found: check wiring\n");
}
}
bool setup_scales(void)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_scales\n", millis());
}
bool res;
res = true;
// Enable Power
digitalWrite(D10, HIGH);
// we wait 400ms (settling time according HX711 datasheet @ 10 SPS
delay(400);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_scale done\n", millis());
}
return res;
}
void setup_flash(void)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_flash\n", millis());
}
if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS)) {
fFlash = true;
gFlash.powerDown();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - FLASH found, but power down\n", millis());
}
}
else {
fFlash = false;
gFlash.end();
gSPI2.end();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - No FLASH found: check hardware\n", millis());
}
}
}
void setup_uplink(void)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - setup_uplink\n", millis());
}
LMIC_setClockError(1*65536/100);
/* figure out when to reboot */
gRebootMs = (CATCFG_T_REBOOT + os_getRndU2() - 32768) * 1000;
// Do an unjoin, so every reboot will trigger a join
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - do an unjoin...\n", millis());
}
LMIC_unjoin();
/* trigger a join by sending the first packet */
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest))) {
if (!gLoRaWAN.IsProvisioned())
gCatena.SafePrintf("%010d - LoRaWAN not provisioned yet. Use the commands to set it up.\n");
else {
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::Joining);
}
/* trigger a join by sending the first packet */
StartNewIteration();
}
}
}
// The Arduino loop routine -- in our case, we just drive the other loops.
// If we try to do too much, we can break the LMIC radio. So the work is
// done by outcalls scheduled from the LMIC os loop.
void loop()
{
gCatena.poll();
}
void ClearLoraData(void)
{
lora_data.version = LORA_DATA_VERSION;
lora_data.vbat = 0;
lora_data.temperature = 0;
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
lora_data.humidity[i] = 0;
lora_data.pressure[i] = 0;
lora_data.weight[i] = 0;
if (i < (MAX_VALUES_TO_SEND - 1)) {
lora_data.temperature_change[i] = 0;
}
}
lora_data_first.version = LORA_DATA_VERSION_FIRST_PACKAGE;
lora_data_first.fw_version = fwVersion;
lora_data_first.vbat = 0;
lora_data_first.humidity = 0;
lora_data_first.pressure = 0;
lora_data_first.weight1 = 0;
lora_data_first.weight2 = 0;
lora_data_first.cal_w1_0 = config_data.cal_w1_0;
lora_data_first.cal_w2_0 = config_data.cal_w2_0;
lora_data_first.cal_w1_factor = config_data.cal_w1_factor;
lora_data_first.cal_w2_factor = config_data.cal_w2_factor;
lora_data_first.temperature = 0;
my_position = 0;
// We initialize last_sensor_reading
last_sensor_reading.vbat = 0;
last_sensor_reading.weight1 = 0;
last_sensor_reading.weight2 = 0;
last_sensor_reading.weight = 0;
last_sensor_reading.temperature = 0;
last_sensor_reading.humidity = 0;
last_sensor_reading.pressure = 0;
}
void ShowLORAData(bool firstTime)
{
gCatena.SafePrintf("%010d - ShowLORAData\n", millis());
if (firstTime) {
gCatena.SafePrintf("{\n");
gCatena.SafePrintf(" \"version\": \"%d\",\n", lora_data_first.version);
gCatena.SafePrintf(" \"fw_version\": \"%d\",\n", lora_data_first.fw_version);
gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data_first.vbat);
gCatena.SafePrintf(" \"humidity\": \"%u\",\n", lora_data_first.humidity);
gCatena.SafePrintf(" \"pressure\": \"%u\",\n", lora_data_first.pressure);
gCatena.SafePrintf(" \"weight1\": \"%ld\",\n", lora_data_first.weight1);
gCatena.SafePrintf(" \"weight2\": \"%ld\",\n", lora_data_first.weight2);
gCatena.SafePrintf(" \"cal_w1_0\": \"%ld\",\n", lora_data_first.cal_w1_0);
gCatena.SafePrintf(" \"cal_w2_0\": \"%ld\",\n", lora_data_first.cal_w2_0);
gCatena.SafePrintf(" \"cal_w1_factor\": \"%d.%03d\",\n", (int)lora_data_first.cal_w1_factor, (int)abs(lora_data_first.cal_w1_factor * 1000) % 1000);
gCatena.SafePrintf(" \"cal_w2_factor\": \"%d.%03d\",\n", (int)lora_data_first.cal_w2_factor, (int)abs(lora_data_first.cal_w2_factor * 1000) % 1000);
gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data_first.temperature);
gCatena.SafePrintf("}\n");
} else {
gCatena.SafePrintf("{\n");
gCatena.SafePrintf(" \"version\": \"%d\",\n", lora_data.version);
gCatena.SafePrintf(" \"vbat\": \"%u\",\n", lora_data.vbat);
gCatena.SafePrintf(" \"temperature\": \"%u\",\n", lora_data.temperature);
gCatena.SafePrintf(" \"humidity\": [");
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
gCatena.SafePrintf("%d", lora_data.humidity[i]);
if (i < (MAX_VALUES_TO_SEND - 1)) {
gCatena.SafePrintf(",");
}
}
gCatena.SafePrintf("],\n");
gCatena.SafePrintf(" \"pressure\": [");
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
gCatena.SafePrintf("%d", lora_data.pressure[i]);
if (i < (MAX_VALUES_TO_SEND - 1)) {
gCatena.SafePrintf(",");
}
}
gCatena.SafePrintf("],\n");
gCatena.SafePrintf(" \"weight\": [");
for (int i = 0; i < MAX_VALUES_TO_SEND; i++) {
gCatena.SafePrintf("%ld", lora_data.weight[i]);
if (i < (MAX_VALUES_TO_SEND - 1)) {
gCatena.SafePrintf(",");
}
}
gCatena.SafePrintf("],\n");
gCatena.SafePrintf(" \"temperature_change\": [");
for (int i = 0; i < MAX_VALUES_TO_SEND - 1; i++) {
gCatena.SafePrintf("%d", lora_data.temperature_change[i]);
if (i < (MAX_VALUES_TO_SEND - 2)) {
gCatena.SafePrintf(",");
}
}
gCatena.SafePrintf("]\n");
gCatena.SafePrintf("}\n");
}
}
uint8_t GetVBatValue(int millivolts)
{
uint8_t res;
if (millivolts <= 2510) {
res = 0;
} else if (millivolts >= 4295) {
res = 255;
} else {
res = (millivolts - 2510) / 7;
}
return res;
}
void DoDeepSleep(uint32_t sleep_time)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - now going to deep sleep\n", millis());
}
// Prepare Deep Sleep
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::Off);
}
Serial.end();
Wire.end();
SPI.end();
if (fFlash)
gSPI2.end();
// Now sleeping...
gCatena.Sleep(sleep_time);
// Recover from wakeup...
Serial.begin();
Wire.begin();
SPI.begin();
if (fFlash)
gSPI2.begin();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - done with deep sleep\n", millis());
}
}
//Following functions are based on "https://github.com/dndubins/QuickStats", by David Dubins
long median(long samples[], int m) //calculate the median
{
//First bubble sort the values: https://en.wikipedia.org/wiki/Bubble_sort
long sorted[m]; // Define and initialize sorted array.
long temp = 0; // Temporary float for swapping elements
for (int i = 0; i < m; i++) {
sorted[i] = samples[i];
}
bubbleSort(sorted, m); // Sort the values
if (bitRead(m, 0) == 1) { //If the last bit of a number is 1, it's odd. This is equivalent to "TRUE". Also use if m%2!=0.
return sorted[m / 2]; //If the number of data points is odd, return middle number.
} else {
return (sorted[(m / 2) - 1] + sorted[m / 2]) / 2; //If the number of data points is even, return avg of the middle two numbers.
}
}
void bubbleSort(long A[], int len) {
unsigned long newn;
unsigned long n = len;
long temp = 0;
do {
newn = 1;
for (int p = 1; p < len; p++) {
if (A[p - 1] > A[p]) {
temp = A[p]; //swap places in array
A[p] = A[p - 1];
A[p - 1] = temp;
newn = p;
} //end if
} //end for
n = newn;
} while (n > 1);
}
long my_read_average(byte gain, byte times) {
long res;
int const num_scale_readings = 50; // number of instantaneous scale readings to calculate the median
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
long readings[num_scale_readings]; // create arry to hold readings
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - my_read_average, measurements: ", millis());
}
hx711.setGain(gain);
for (int i = 0; i < num_scale_readings; i++) {
readings[i] = hx711.read(); // fill the array with instantaneous readings from the scale
}
res = median(readings, num_scale_readings); // calculate median
if (config_data.debug_level > 0) {
gCatena.SafePrintf("; median of %d samples: %d\n", num_scale_readings, res);
}
return res;
}
void ReadSensors(SENSOR_data &sensor_data) {
SENSOR_data res;
int32_t weight_current32;
// vBat
gCatena.poll();
int vbat_mv = (int)(gCatena.ReadVbat() * 1000.0f);
res.vbat = GetVBatValue(vbat_mv);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - vBat: %d mV\n", millis(), vbat_mv);
}
// Read Scales
if (setup_scales()) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - HX711 LoadCell is ready.\n", millis());
}
gCatena.poll();
res.weight1 = (int32_t)my_read_average(32, 7);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - Load_cell 1 weight1_current: %ld\n", millis(), res.weight1);
}
gCatena.poll();
res.weight2 = (int32_t)my_read_average(128, 7);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - Load_cell 2 weight2_current: %ld\n", millis(), res.weight2);
}
}
else {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - HX711 LoadCell not ready.\n", millis());
}
}
// Disable Power
gCatena.poll();
digitalWrite(D10, LOW);
// Gewicht berechnen
weight_current32 = (int32_t)((((res.weight1 - config_data.cal_w1_0) / config_data.cal_w1_factor) + ((res.weight2 - config_data.cal_w2_0) / config_data.cal_w2_factor)) / 5.0);
if (weight_current32 < 0) {
weight_current32 = 0;
} else if (weight_current32 > UINT16_MAX) {
//weight_current32 = UINT16_MAX;
// we set the weight to 0, as such high values are not realistic and probably a sign for bad calibration...
weight_current32 = 0;
}
res.weight = (uint16_t)weight_current32;
if (fBme) {
gCatena.poll();
/* warm up the BME280 by discarding a measurement */
(void)gBME280.readTemperature();
gCatena.poll();
Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity();
// temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C
// pressure is 2 bytes, hPa * 10.
// humidity is one byte, where 0 == 0/256 and 0xFF == 255/256.
if (config_data.debug_level > 0) {
gCatena.SafePrintf(
"%010d - BME280: T: %d P: %d RH: %d\n",
millis(),
(int)m.Temperature,
(int)m.Pressure,
(int)m.Humidity);
}
res.temperature = (int16_t)((m.Temperature) * 10);
res.humidity = (uint8_t)m.Humidity;
res.pressure = (uint8_t)((m.Pressure / 100) - PRESSURE_OFFSET);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - pressure_current: %d\n", millis(), res.pressure);
}
}
sensor_data = res;
}
void StartNewIteration() {
uint32_t wait_time;
wait_time = 0;
// we increment the iteration counter
iteration++;
SENSOR_data current_sensor_reading;
ReadSensors(current_sensor_reading);
int16_t temp_change;
// vBus
float vBus = gCatena.ReadVbus();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - vBus: %d mV\n", millis(), (int)(vBus * 1000.0f));
}
fUsbPower = (vBus > 4.3) ? true : false;
if (next_package_is_init_package) {
lora_data_first.vbat = current_sensor_reading.vbat;
lora_data_first.weight1 = current_sensor_reading.weight1;
lora_data_first.weight2 = current_sensor_reading.weight2;
lora_data_first.temperature = current_sensor_reading.temperature;
lora_data_first.humidity = current_sensor_reading.humidity;
lora_data_first.pressure = current_sensor_reading.pressure;
} else {
lora_data.vbat = current_sensor_reading.vbat;
lora_data.weight[my_position] = current_sensor_reading.weight;
if (my_position == 0) {
lora_data.temperature = current_sensor_reading.temperature;
} else {
temp_change = current_sensor_reading.temperature - last_sensor_reading.temperature;
if (temp_change > 127) {
temp_change = 127;
}
if (temp_change < -128) {
temp_change = -128;
}
lora_data.temperature_change[my_position - 1] = (uint8_t)temp_change;
}
lora_data.humidity[my_position] = current_sensor_reading.humidity;
lora_data.pressure[my_position] = current_sensor_reading.pressure;
}
if (my_position == 0) {
timer_pos0 = millis();
}
if (config_data.debug_level > 0) {
ShowLORAData(next_package_is_init_package);
}
my_position++;
// Should we send the Data?
// we send data the first time the system is started, when the array is full
// or when the weight has fallen more than threshold or the first measurement is
// more than one hour old (which should not happen :-) )
if ( (next_package_is_init_package) || (my_position >= MAX_VALUES_TO_SEND) || ((last_sensor_reading.weight - current_sensor_reading.weight) > SEND_DIFF_THRESHOLD_5GRAMS) || ((millis() - timer_pos0) > 3600000)) {
lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - startSendingUplink(), my_position: %d, iteration: %d, package_counter: %d\n", millis(), my_position, iteration, package_counter);
}
// the first 12 packets are "Init-Packets" or each INIT_PACKAGE_INTERVAL ...
startSendingUplink(next_package_is_init_package);
next_package_is_init_package = ((iteration < 12) || ((package_counter % INIT_PACKAGE_INTERVAL) == 0));
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::TwoShort);
}
// Loop while sending is in progress, timeout just in case after 300 seconds
long start_time = millis();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - waiting while send is in progress\n", millis());
}
while (send_in_progress && ((millis() - start_time) < 300000))
{
gCatena.poll();
yield();
}
wait_time = (uint32_t)((millis() - start_time) / 1000);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - end waiting, wait time was %d seconds\n", millis(), wait_time);
}
}
if (not(next_package_is_init_package)) {
// we make the current sensor reading to the last one...
last_sensor_reading = current_sensor_reading;
}
uint32_t sleep_time_sec;
if (wait_time < CATCFG_T_INTERVAL) {
sleep_time_sec = CATCFG_T_INTERVAL - wait_time;
} else {
// minimal sleep time is 5 seconds
sleep_time_sec = 5;
}
// for the first 12 iterations, we set the sleep time to 10 seconds only...
if (iteration <= 12) {
sleep_time_sec = 10;
}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - now going to sleep for %d seconds...\n", millis(), sleep_time_sec);
if (fUsbPower) {
gCatena.SafePrintf("%010d - USB Power is on\n", millis());
} else {
gCatena.SafePrintf("%010d - USB Power is off\n", millis());
}
//Serial.flush();
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::Sleeping);
}
}
if (!fUsbPower) {
DoDeepSleep(sleep_time_sec);
os_setTimedCallback(
&iterationJob,
os_getTime() + sec2osticks(2),
startNewIterationCb);
}
else {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - light sleep; os_setTimedCallback for startNewIterationCb in %d...seconds\n", millis(), sleep_time_sec);
}
os_setTimedCallback(
&iterationJob,
os_getTime() + sec2osticks(sleep_time_sec),
startNewIterationCb);
}
}
void startSendingUplink(bool firstTime)
{
send_in_progress = true;
LedPattern savedLed;
if (config_data.debug_level > 1) {
savedLed = gLed.Set(LedPattern::Measuring);
}
if (config_data.debug_level > 1) {
if (savedLed != LedPattern::Joining)
gLed.Set(LedPattern::Sending);
else
gLed.Set(LedPattern::Joining);
}
bool fConfirmed = false;
if (gCatena.GetOperatingFlags() & (1 << 16)) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("requesting confirmed tx\n");
}
fConfirmed = true;
}
if (firstTime) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - SendBuffer firstTime\n", millis());
}
gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
package_counter++;
} else {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - SendBuffer not firstTime\n", millis());
}
gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
package_counter++;
}
ClearLoraData();
}
static void sendBufferDoneCb(
void* pContext,
bool fStatus)
{
osjobcb_t pFn;
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::Settling);
}
pFn = settleDoneCb;
if (! fStatus)
{
if (!gLoRaWAN.IsProvisioned())
{
// we'll talk about it at the callback.
pFn = txNotProvisionedCb;
// but prevent join attempts now.
gLoRaWAN.Shutdown();
}
else if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - send buffer failed\n", millis());
}
}
os_setTimedCallback(
&sendJob,
os_getTime() + sec2osticks(CATCFG_T_SETTLE),
pFn
);
}
static void txNotProvisionedCb(
osjob_t *pSendJob
)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LoRaWAN not provisioned yet. Use the commands to set it up.\n");
}
gLoRaWAN.Shutdown();
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::NotProvisioned);
}
}
static void settleDoneCb(
osjob_t* pSendJob)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - settleDoneCb\n", millis());
}
if (config_data.debug_level > 2) {
// Terry vv
gCatena.SafePrintf("LMIC.rxDelay: %i\n", LMIC.rxDelay);
gCatena.SafePrintf("LMIC.dn2Dr: %i\n", LMIC.dn2Dr);
gCatena.SafePrintf("LMIC.dn2Freq: %i\n", LMIC.dn2Freq);
gCatena.SafePrintf("LMIC.rx1DrOffset: %i\n", LMIC.rx1DrOffset);
gCatena.SafePrintf("LMIC.adrAckReq: %i\n", LMIC.adrAckReq);
gCatena.SafePrintf("LMIC.adrEnabled: %i\n", LMIC.adrEnabled);
// Terry ^^
}
if (uint32_t(millis()) > gRebootMs) {
// time to reboot
NVIC_SystemReset();
}
sleepDoneCb(pSendJob);
}
static void sleepDoneCb(osjob_t* pJob)
{
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::WarmingUp);
}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - sleepDoneCb\n", millis());
}
os_setTimedCallback(
pJob,
os_getTime() + sec2osticks(CATCFG_T_WARMUP),
warmupDoneCb);
}
static void warmupDoneCb(osjob_t* pJob)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - warmupDoneCb\n", millis());
}
send_in_progress = false;
}
static void startNewIterationCb(osjob_t* pJob)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - startNewIterationCb\n", millis());
}
if (! stop_iterations) {
StartNewIteration();
}
}
static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage)
{
long cal_w1_0;
long cal_w2_0;
float cal_w1_factor;
float cal_w2_factor;
union u_tag {
byte b[4];
float fval;
} u;
SENSOR_data temp_sensor_data;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - receiveMessage was called!!!\n", millis());
}
if (config_data.debug_level > 2) {
// Terry vv
if (port == 0)
{
gCatena.SafePrintf("MAC message:");
for (unsigned i = 0; i < LMIC.dataBeg; ++i)
{
gCatena.SafePrintf(" %02x", LMIC.frame[i]);
}
return;
}
gCatena.SafePrintf("Port: %i\n", port);
gCatena.SafePrintf("LMIC.rxDelay: %i\n", LMIC.rxDelay);
gCatena.SafePrintf("LMIC.dn2Dr: %i\n", LMIC.dn2Dr);
gCatena.SafePrintf("LMIC.dn2Freq: %i\n", LMIC.dn2Freq);
gCatena.SafePrintf("LMIC.rx1DrOffset: %i\n", LMIC.rx1DrOffset);
// Terry ^^
}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("message received port(%02x)/length(%x)\n",
port, nMessage
);
// we print out the received message...
gCatena.SafePrintf("Current LMIC.seqnoUp: %d\n", LMIC.seqnoUp);
gCatena.SafePrintf("Received Data (Payload): \n");
for (byte i = 0; i < nMessage; i++) {
gCatena.SafePrintf("%02x", pMessage[i]);
}
gCatena.SafePrintf("\n");
}
if (LMIC.seqnoUp > 5) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("setting calibration config with downlink is only possible within first five uplink packets!\n");
return;
}
}
if (port == 1 && nMessage == 17) {
cal_w1_0 = 0;
cal_w1_0 += (long)pMessage[1] << 24;
cal_w1_0 += (long)pMessage[2] << 16;
cal_w1_0 += (long)pMessage[3] << 8;
cal_w1_0 += (long)pMessage[4];
cal_w2_0 = 0;
cal_w2_0 += (long)pMessage[5] << 24;
cal_w2_0 += (long)pMessage[6] << 16;
cal_w2_0 += (long)pMessage[7] << 8;
cal_w2_0 += (long)pMessage[8];
u.b[0] = pMessage[12];
u.b[1] = pMessage[11];
u.b[2] = pMessage[10];
u.b[3] = pMessage[9];
cal_w1_factor = u.fval;
u.b[0] = pMessage[16];
u.b[1] = pMessage[15];
u.b[2] = pMessage[14];
u.b[3] = pMessage[13];
cal_w2_factor = u.fval;
if (pMessage[0] == 0) {
// set both scales to 0, use transmitted values (offset only)
if (config_data.debug_level > 0) {
gCatena.SafePrintf("set calibration to zero, cal_w1_0: %d, cal_w2_0: %d\n", cal_w1_0, cal_w2_0);
}
config_data.cal_w1_0 = cal_w1_0;
config_data.cal_w2_0 = cal_w2_0;
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
lora_data_first.cal_w1_0 = config_data.cal_w1_0;
lora_data_first.cal_w2_0 = config_data.cal_w2_0;
}
if (pMessage[0] == 1) {
// update calibration config with transmitted values
if (config_data.debug_level > 0) {
gCatena.SafePrintf("update calibration config, cal_w1_0: %d, cal_w2_0: %d, cal_w1_factor: %d.%03d, cal_w2_factor: %d.%03d\n", cal_w1_0, cal_w2_0, (int)cal_w1_factor, (int)abs(cal_w1_factor * 1000) % 1000, (int)cal_w2_factor, (int)abs(cal_w2_factor * 1000) % 1000);
}
config_data.cal_w1_0 = cal_w1_0;
config_data.cal_w2_0 = cal_w2_0;
config_data.cal_w1_factor = cal_w1_factor;
config_data.cal_w2_factor = cal_w2_factor;
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
lora_data_first.cal_w1_0 = config_data.cal_w1_0;
lora_data_first.cal_w2_0 = config_data.cal_w2_0;
lora_data_first.cal_w1_factor = config_data.cal_w1_factor;
lora_data_first.cal_w2_factor = config_data.cal_w2_factor;
}
}
}
/* process "application hello" -- args are ignored */
// argv[0] is "hello"
// argv[1..argc-1] are the (ignored) arguments
cCommandStream::CommandStatus cmdHello(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
pThis->printf("Hello, world!\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
pThis->printf("{\n");
pThis->printf(" \"cal_w1_0\": \"%d\",\n", config_data.cal_w1_0);
pThis->printf(" \"cal_w2_0\": \"%d\",\n", config_data.cal_w2_0);
pThis->printf(" \"cal_w1_factor\": \"%d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000);
pThis->printf(" \"cal_w2_factor\": \"%d.%03d\n", (int)config_data.cal_w2_factor, (int)abs(config_data.cal_w2_factor * 1000) % 1000);
pThis->printf("}\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdGetSensorReadings(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
SENSOR_data temp_sensor_data;
ReadSensors(temp_sensor_data);
pThis->printf("{\n");
pThis->printf(" \"weight\": \"%d\",\n", temp_sensor_data.weight);
pThis->printf(" \"weight1_raw\": \"%d\",\n", temp_sensor_data.weight1);
pThis->printf(" \"weight2_raw\": \"%d\",\n", temp_sensor_data.weight2);
pThis->printf(" \"temperature\": \"%d\",\n", temp_sensor_data.temperature);
pThis->printf(" \"humidity\": \"%d\",\n", temp_sensor_data.humidity);
pThis->printf(" \"pressure\": \"%d\",\n", temp_sensor_data.pressure);
pThis->printf(" \"batt\": \"%d\",\n", temp_sensor_data.vbat);
pThis->printf("}\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdGetScale1(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
pThis->printf("getscale1\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdGetScale2(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
pThis->printf("getscale2\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateZeroScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
setup_scales();
config_data.cal_w1_0 = (int32_t)my_read_average(32, 10);
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_zero_scale_a was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateZeroScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
setup_scales();
config_data.cal_w2_0 = (int32_t)my_read_average(128, 10);
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_zero_scale_b was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
String w1_gramm(argv[1]);
long weight1;
setup_scales();
weight1 = my_read_average(32, 10);
config_data.cal_w1_factor = (float)((weight1 - config_data.cal_w1_0) / w1_gramm.toFloat());
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_scale_a was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
String w2_gramm(argv[1]);
long weight2;
setup_scales();
weight2 = my_read_average(128, 10);
config_data.cal_w2_factor = (float)((weight2 - config_data.cal_w2_0) / w2_gramm.toFloat());
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_scale_b was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdSetDebugLevel(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
String s_debug_level(argv[1]);
config_data.debug_level = s_debug_level.toInt();
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"set_debug_level was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdGetDebugLevel(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"debug_level is %d\" }\n", config_data.debug_level);
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdStopIterations(cCommandStream *pThis, void *pContext, int argc, char **argv)
{
stop_iterations = true;
return cCommandStream::CommandStatus::kSuccess;
}