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The aim of this bachelor’s thesis was to study LoRaWAN limitations and power
consumption in real life working conditions for Etteplan Oy. Etteplan Oy was in-
terested in using LoRaWAN in its future Internet of Things (loT) projects and
thus needed to know more about its suitability on various use cases, with a
strong emphasis on battery powered devices. This thesis aims to provide guide-
lines for designing and developing LoRaWAN based embedded devices and
networks. The thesis will also outline edge cases and problems that might oth-
erwise go unnoticed when developing such a device.

A full protocol specification and regional parameters for LoRaWAN were availa-
ble from The LoRa Alliance. These documents were used to study how Lo-
RaWAN works and how some of its features are implemented. The documenta-
tion also contains some recommendations for using this technology. For things
that were not explained in the specification, a test on the actual hardware and
software was performed to test how the protocol works. Real world testing for
range was also performed on suburban and open areas. The software used on
end devices was built with Mbed OS 5.8 with an integrated LoRaWAN stack.

The result of the study was that LoRaWAN's suitability must be carefully investi-
gated on case basis. The device designer must know several design parame-
ters before considering how well LoRaWAN would fit into this design. Such de-
sign parameters include: the wanted battery life, required wireless transmission
range, payload size and message frequency. LoRaWAN has clear advantages
when transmitting very small amounts of data infrequently, and a when good
object penetration is required. On the other hand, LoRaWAN is not suitable for
designs where a high bandwidth or a fast packet rate are required. Power con-
sumption is also very dependent on the use case but power consumption can
also be easily predicted if that is required by the design.

Keywords: LoRaWAN, LPWAN, LoRa, Internet of Things, IoT, Mbed, wireless
communication, power consumption
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1 INTRODUCTION

The number of 10T devices is growing fast, and the variety of use cases is also
growing. 10T is all about connectivity and moving data between devices. As
smart devices are being used almost everywhere, they still have to be able to
communicate and move data. A device designer must choose between many
different ways of communicating both wired and wireless. Wireless networking
Is a very common and flexible way for loT appliances to transfer information. All
wireless radio technologies have their own characteristics for range, available
bandwidth, and power consumption. Choosing the right radio technology for the

right use case is important.

LoRaWAN is a Long Range (LoRa) Low-Power Wide-Area Network (LPWAN)
technology which targets at the market by providing long range and low power
consumption wireless networking. LoORaWAN uses a proprietary LoRa modula-
tion owned by Semtech. The media access control (MAC) layer defined by an
open LoRaWAN specification works on top of the proprietary physical imple-
mentation. The specification is maintained by LoRa Alliance. LoRaWAN oper-
ates on an unlicensed radio spectrum and does not require any additional li-

cencing fees to be paid. (1.)

Etteplan has been an early investor in the LoRaWAN technology by working
closely with ARM and porting Semtech’s LoRaWAN stack to Mbed OS in 2017.
Since LoRaWAN is still a new technology, it is in Etteplan’s best interest to
study its suitability for upcoming projects. By knowing LoRaWAN’s limitations
and best use cases, Etteplan and its customers will have the benefit to utilize
Mbed OS with LoRaWAN when it is deemed to be the best solution for the prob-
lem at hand.

Several methods were used in order to understand LoRaWAN’s pros and cons.
Studying the protocol specification, regional parameters, and regulations were
the foundations for this thesis. After a throughout study of these topics, there
were still a number of uncertain issues which these documents do not explain or

do not make straightforward to understand. To solve these uncertainties, tests
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with real hardware on real working conditions were first planned and then car-

ried out. All findings and results were then brought together for a conclusion.



2 LORAWAN INNER WORKINGS

In order to understand what parameters affect LoRaWAN end device’s power
consumption and performance, one must first understand how the LoRaWAN
physical layer works and what limitations and features the MAC layer imposes.
This chapter introduces what duties the physical layer and the MAC layer

handle.

Application layer

Media access control (MAC) layer

Physical layer (proprietary LoRa)

Regional frequency band

FIGURE 1. The LoRaWAN stack.

LoRaWAN is actually two technologies combined. At the physical layer, there is
the proprietary LoRa modulation scheme and on top of that there is the open-
standard MAC layer for the LPWAN implementation. These technologies to-
gether form the actual LoRaWAN stack implementation as seen in figure 1.

2.1 LoRa physical layer

On the physical layer, the proprietary LoRa modulation by Semtech is used.
The LoRa modulation is a derivative of Chirp Spread Spectrum modulation
(CSS). The modulation has constant amplitude and it sweeps across the entire
bandwidth. The CSS modulation was originally developed to be used in radar
systems. The modulation has few selectable parameters to tune its perfor-

mance: modulation bandwidth, code rate, and spreading factor. CSS also has
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relatively low transmission power and it is very resistant against jamming, multi-

path propagation, and unwanted doppler effects. (2.)

The physical layer also contains gray indexing, data whitening, interleaving, and
forward error correction to reduce effects of interference and poor radio condi-

tions. An exact implementation is proprietary. (3.)
2.1.1 Modulation

LoRa modulates information into chirps. Chirps are constantly varying fre-
guency signals. Rising frequency chirps are upchirps and decreasing frequency
chirps are downchirps. The frequency bandwidth of a chirp is equal to the used
channel bandwidth, meaning that a single chirp uses the entire bandwidth. (3.)

v

FIGURE 2. LoRa modulation as seen on a spectrogram plot. (4.)

Data is modulated into chirps by instantaneous frequency changes. Figure 2
shows the actual LoRa modulated signal received with a software defined radio.
Modulation has also a preamble which consists of repeated upchirps in the be-
ginning of a frame. The receiver will use this known sequence to adjust its re-

ceiver before demodulation. (3.)
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2.1.2 Demodulation

Demodulating a spread spectrum signal requires the receiver to know how the
expected signal has been spread across the spectrum. The receiver can then
generate upchirp and downchirp signal patterns and then multiply the received

signal with generated patterns to extract symbols. (3.)

TABLE 1. LoRa radio demodulation parameters. (5.)

SpreadingFactor Spreading Factor LoRa Demodulator
(RegModulationCfg) (Chips [ symbaol) SNR
3 64 -5 dB
7 128 -75dB
8 256 -10 dB
] 512 -12.5dB
10 1024 -15dB
11 2048 -17.5dB
12 4096 -20 dB

Due to the spread spectrum nature of the LoRa modulation, it can be demodu-

lated with a negative signal-to-noise ratio (SNR). Table 1 from LoRa radio mod-
ule’s datasheet shows the minimum SNR required for demodulation at different
spreading factors. Being able to a receive signal below the noise floor is the key

for LoRa’s long range and good building penetration.

2.1.3 Bandwidth

A bandwidth is expressed as kHz. The LoRa modulation has no fixed band-
width. It can operate on different bandwidth settings. The actual channel band-
width is fixed. Semtech chipsets offer a wide bandwidth range to be used. For
example the SX1276 radio chipset has a bandwidth range from 7.8 kHz to 500
kHz (6). The modulation the uses entire available bandwidth whereas upchirps
or downchirps sweep across the entire channel bandwidth. Typical bandwidths
specified by LoRaWAN regional specifications are 125 kHz, 250 kHz, and 500
kHz (7). A higher bandwidth means a higher data transfer rate.

12



2.1.4 Spreading factor

A spreading factor is an important aspect for the LoRa modulation. It represents
the rate on which the signal changes frequency. The spreading factor is ex-
pressed as a number ranging from 7 — 12, representing the speed of a fre-
quency change in a chirp. Higher numbers mean that the chirp lasts longer
meaning that sweep across the bandwidth lasts longer (2.). Figure 3 illustrates

how the duration of the chirp increases as the spreading factor increases.

Comparasion of LoRa Spreading Factors: SF 7 to SF 12
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FIGURE 3. Spectrogram of different LoRa spreading factors. (8.)

The spreading factor affects the data transfer rate and demodulation SNR (Fig-
ure 2.). When data is spread more (a higher spreading factor), it can be demod-
ulated with a lower SNR value. The spreading factor combined with the channel

bandwidth forms the LoRa data transfer rate (2).
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2.1.5 Code rate

LoRa contains a variable error correction scheme, which requires extra redun-
dant data to be generated to the message. The code rate defines how many ex-
tra bits of data are encoded to a message when it is sent over the air. An in-
creasing number of redundant bits allows error correction to correct more errors
but increases a message size. (2). The code rate is expressed as k/n which
means that for every k bit, the coder will generate n bits of data (9). LoRa has

no default code rate but 4/5 is the most used one (10).
2.2 MAC layer

An MAC layer handles the actual LPWAN protocol work. The MAC layer proto-
col is defined by the LoRaWAN specification, and several implementations exist
(11, 12). The MAC layer works on top of the proprietary LoRa physical layer. In
most cases this means that MAC runs on a microcontroller which is connected
to a LoRa radio module, which handles the physical layer.

2.2.1 Mbed OS

Mbed OS is an open source embedded operating system developed by ARM.
Mbed OS is specifically designed for IoT applications. Mbed OS targets ARM
Cortex-M microcontrollers and provides connectivity, hardware drivers, and a

real time operating system (RTOS). (13).

Since the version 5.8, Mbed OS has an integrated software LoRaWAN stack
compliant with the v1.0.2 specification. Mbed and its LoRaWAN stack are free
to use and only require a development board with a LoRa radio that is sup-
ported by Mbed OS. This thesis uses Mbed OS for all LoRaWAN testing on the
real hardware and only focuses on the v1.0.2 specification because there is no

support for the 1.1 specification yet on Mbed. (14).
2.2.2 Device classes

As different devices have different connectivity and power requirements, the Lo-

RaWAN specification specifies three different device classes. The classes are
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named from A to C. The class A is mandatory and every MAC layer should im-
plement it. Classes B and C are optional and do not have to be implemented.

Different device classes have different communication proprieties.

e Class A
o Bi-directional communications
o Receives only shortly after each uplink transmission
o Lowest power
e Class B (beacon)
o Bi-directional communications
o Receives shortly after each uplink transmission
o Has scheduled receive windows
o Extra receive windows increase power consumption
e Class C (continuous)
o Continuous receiver (only closed when transmitting)

o Highest power consumption
This thesis only focuses on the lowest power end device class A. (15.)
2.2.3 Receive windows

Class A devices can only receive downlinks after sending an uplink (see figure
4 below).

[ Transmit

pl
-~
=
<
[=J

FIGURE 4. Receive window timing. (15.)
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The device opens two short receive windows after each uplink even if the appli-
cation layer is not waiting for any message. If a downlink is received on the first
receive window, the second receive window is not opened. The first receive
window uses same radio parameters as the uplink before it. It matches a
spreading factor, code rate, bandwidth, and frequency. The second receive win-
dow has fixed parameters. (15).

2.2.4 Channel plan and channel selection

The LoRaWAN channel plan is a list of radio channels which a device or a gate-
way is using to communicate. The devices operating in Europe have the maxi-
mum of 16 channels in their channel plan. The channel plan contains infor-
mation on all usable channels of the device. Each channel has the minimum
and maximum usable data rate, frequency, and sub-band where the channel
belongs. (7, 15.)

The channel selection must be done at random from all available channels.
Channels can be unavailable or unusable if a channel’s sub-band has no duty
cycle left or the channel does not support the data rate that the device is trying
to use. The channel might also be disabled by the network server with an MAC
command. (15.)

2.2.5 Device commissioning

Device commissioning means connecting a device to a LoRaWAN network. The
LoRaWAN specification has two different ways of doing this: Activation By Per-
sonalization (ABP) or Over-The-Air-Activation (OTAA). The device designer can
freely choose between both methods and after the connection, devices behave

exactly in the same way regardless how they were connected. (15.)
Both methods are discussed in detail in chapter 6.
2.2.6 Message types

The LoRaWAN specification has several different message types. Messages
sent by the end device are called uplinks and messages sent by the gateway

are downlinks. LoRaWAN has both unconfirmed and confirmed messages. Both
16



the end device and gateway can freely choose between unconfirmed or con-
firmed messages. Unconfirmed messages are only sent out once and they are
never acknowledged in any way. Unconfirmed messages may be lost without

any indication to the application. (15.)

Confirmed messages will always require a confirmation when they are received.
When the end device sends a confirmed message, the server must respond
with an acknowledge message immediately when the device opens an RX1 or
an RX2 window. If the confirmation does not arrive within these windows, the
message is considered lost. When the network server sends a confirmed down-
link message to the end device, it will have to wait for the next uplink to receive
a confirmation. The end device will not immediately respond. The confirmation
bit is set on the next uplink sent by the end device. Figure 5 illustrates a con-

firmed message logic flow. (15.)

Schedule Downlink

Response to confirmed message confirmed LoRaWAN server confirmed
downlink
Confirmed Confirm Any uplink Confirmed Any uplink,
uplink downlink confirm bit set
Schedule uplink RX1 or RX2 Schedule uplink RX1 or RX2 Schedule uplink

_ Set confirm bit
Confirmed message from end device End device for next uplink

Time

FIGURE 5. Confirmed message logic.

A protocol specification also contains proprietary messages. Proprietary mes-
sages are undefined but can be used. Proprietary messages are meant for ex-
tending the protocol with custom message implementations. If proprietary mes-
sages are being used, the device designer must ensure that both the end de-
vice and network server are running the same custom implantation that under-

stands these messages. (15.)
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2.2.7 Frame counters

In order to prevent replay attacks, LoRaWAN implements frame counters on
both uplinks and downlinks. Both the device and server have to keep track of
these message counters and ignore messages with the frame counter that has
already been used. (15.)

2.2.8 MAC commands

LoRaWAN has a number of MAC commands that are used for network admin-
istration. MAC commands are exchanged exclusively between the network
server's MAC layer and the end device’s MAC layer. MAC commands are never
visible to the application layer. Every MAC command has a corresponding an-
swer and every command should be answered accordingly. The complete list
and definitions for all commands can be found in the LoRaWAN specification.
(15.)

2.3 Network structure

LoRaWAN uses a star-of-stars topology on its networks. Networks can have
several gateways, and they all connect to a central server. Gateways only route
messages from or to the central network server. Figure 6 shows a typical Lo-
RaWAN network topology. Gateways do not run the LoRaWAN MAC layer. The
central network server runs the MAC layer where all protocol functions, such as
message formats, MAC commands and commissioning logic are done. The net-
work server then uses a standard TCP/IP connection to exchange data with
gateways. Gateways may be located anywhere in the world and several gate-

ways can receive a single end device’s messages. (16.)
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FIGURE 6. LoRaWAN network with a centralized network server. (16.)
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3 REGIONAL LIMITATIONS

As LoRaWAN operates on licence free frequencies, it has different regulations
depending on the region where it operates. This chapter outlines the limitations
for an Europe 868-MHz industrial, scientific and medical (ISM) band. Under-
standing the limits of the planned operating region is crucial when attempting to

determine if LoORaWAN is the right choice for this application. (7.)
3.1 Sub-bands

LoRaWAN uses the 868-870-MHz ISM band in Europe. This band has been di-
vided into several sub-bands. Each sub-band has its own limitations set by Eu-
ropean regulations. A radio device using these frequencies must obey these

limitations with no exceptions. (7, 17.)

TABLE 2. 863 — 870MHz sub-bands and their limitations. (17.)

Band Edge Frequencies Field Power ipecfrum Band Width
Ccess
g (Note1,2) 863 MH:z 870 MHz +14 dBm 0.1% or LBT+AFA |7 MHz
g (Note2) 863 MHz 870 MHz -4.5dBm /100 kHz | 0.1% or LBT+AFA |7 MHz
g (Note2) 865 MHz 870 MHz -0.8 dBm /100 kHz [0.1% or LBT+AFA |5 MHz
865 MHz 868 MHz +6.2 dBm / 100 kHz | 1% or LBT+AFA |3 MHz
gl 868.0 MHz 868.6 MHz | +14 dBm 1% or LBT+AFA | 600 kHz
g2 868.7 MHz 869.2 MHz | +14 dBm 0.1% or LBT+AFA | 500 kHz
g3 869.4 MHz 869.65 MHz | +27 dBm 10% or LBT+AFA | 250 kHz
g4 869.7 MHz 870 MHz +14 dBm 1% or LBT+AFA | 300 kHz
g4 869.7 MHz 870 MHz +7 dBm No requirement 300 kHz
Notel: Modulation bandwidth = 300 kHz is allowed. Preferred channel spacing is = 100 kHz.
Note2: Sub-bands for alarms are excluded (see ERC/REC 70-03 Annex 7).

Table 2 shows that each sub-band has a frequency range, maximum transmis-
sion power, and duty cycle limitation set by regulations. The device channel
plan needs to know about sub-bands and their limitations to be able to keep its

radio functioning within the set regulations.
3.2 Duty cycle

A duty cycle is a mechanism for limiting a device access to radio frequencies. A

duty cycle means the amount of time each device can be transmitting. This time
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is known as Time on Air (ToA). A typical duty cycle limitation is 1% meaning
that if the device transmits for one second, it must not transmit for the next 99
seconds. (18.)

To calculate how long the device must be silent for a given ToA, the formula 1
below can be used (19).

Tott = (TimeONAIr / DutyCycle) — TimeOnAir FORMULA 1
Where

TimeOnAir = radio transmission time (S)
DutyCycle = sub-band duty cycle limitation (%)

Toft = time that transmitter must be silent on current sub-band (s)

A duty cycle is tied to a specific sub-band, and every sub-band in Europe is duty
cycle limited. Sub-bands may have different duty cycle limitations. If a sub-band
contains 3 LoRaWAN channels, their total TOA must be less than the allowed
duty cycle. If a device uses all 3 channels equally and the sub-band’s duty cycle
limitation is 1%, each channel has a ~0.34% duty cycle limitation. If a device
has two channels and they are on different sub-bands, the device has then a

2% total duty cycle limitation, if both sub-bands have a 1% limit. (18.)

All devices using these bands must obey these limits, and gateways are not an
exception. If the gateway has to send lots of downlinks, it may then run out of its

duty cycle reserve and be unable to send downlinks or acknowledge messages.
3.3 Transmit power

The maximum transmit power is also regulated. An LoRaWAN device operating
on the 868-MHz unlicensed band is allowed to have the Equivalent Radiated
Power (ERP) of +14dBm. All devices using this band must obey this rule, in-

cluding the gateways for LoRaWAN. (7.)

The LoRaWAN specification has the maximum transmitter power defined as
MaxEIRP where EIRP stands for the Effective Isotropic Radiated Power (EIRP).

EIRP is defined as the total radiated power radiated by a hypothetical isotropic
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antenna. MaxEIRP for LoRaWAN in Europe is +16dBm. The difference be-
tween the Effective Radiated Power (ERP) and EIRP is that EIRP compares the
radiated power to a hypothetical isotropic antenna, and ERP uses a real an-

tenna. Formula 2 below shows the relation between ERP and EIRP. (7, 20.)
ERP = EIRP - 2.15dB FORMULA 2
Where

ERP = effective radiated power (dBm)
EIRP = effective Isotropic Radiated Power (dBm)

Because of the ERP limitations, devices with high gain antennas will need to re-
duce their transmission power to comply with these regulations. A high gain an-
tenna will not allow the device to use any more transmission power but high
gain will increase the receiver sensitivity. A higher gain antenna can help the

device save power by using less power when transmitting.
3.4 Data rate and bandwidth

The available date rate and bandwidth are depending on radio regulations. Lo-
RaWAN regional parameters define 8 different data rates to be used in Europe.
As discussed earlier, the LoRa modulation has a variable spreading factor and
bandwidth which form the actual data transfer rate. Regional parameters com-

bine both and then refer to them as data rates. (7.)

TABLE 3. Data rate definition for LoRaWAN on the Europe 868-MHz band. (7.)

DataRate Configuration Indicative physical
bit rate [bit/s]
0 LoRa: SF12 /125 kHz 250
1 LoRa: SF11 /125 kHz 440
2 LoRa: SF10/ 125 kHz 980
3 LoRa: SF9 /125 kHz 1760
4 LoRa: SF8/ 125 kHz 3125
5 LoRa: SF7 /125 kHz 5470
6 LoRa: SF7 / 250 kHz 11000
7 FSK: 50 kbps 50000
8..15 RFU

Table 4: TX Data rate table
22



Table 3 has all available data rates for LoRaWAN in Europe. All data rates ex-
cept 6 and 7 are using a 125-kHz bandwidth and only varying spreading factor
to vary the data transfer rate. Data rates 6 and 7 are special. The data rate 6 re-
quires a 250-kHz bandwidth which is not available on all sub-bands. The data
rate 7 does not use the LoRa modulation at all. Instead, it uses the Frequency-
shift keying (FSK) modulation for the high speed data transfer. As the LoRa
modulation and FSK are two distinct modulation types, the receiver must be

configured to correctly expect the incoming FSK transmission. (7.)

Data rates are denoted with a syntax DRx where x is a number from 0 to 7. The
LoRaWAN specification uses this syntax when referencing to the actual data

rate and to the used spreading factor and bandwidth. (7.)
3.5 Channel plan

When operating in Europe, LoORaWAN specifies 3 mandatory channels that
every device must always have on its channel plan and that every gateway
should be listening. These channels enable any device to establish a connec-
tion to a network without knowing its channel plan. Europe channel plan has a

maximum of 16 channels. (7.)

TABLE 4. The Things Network channel plan.

Fregquency Eandwidth SF max SF min
5651 MHz [M2IM) 125 kHz 12 '
868.3 MHz (JOIM) 125 kHz 12 T
B68.3 MHz 250 kHz T T
8685 MHz [JOIM) 125 kHz 12 T
868.8 MHz FSK FSK FSK
B&T7.1 MHz 125 kHz 12 il
8673 MHz 126 kHz 12 T
BET 5 MHz 125 kHz 12 T
gbf.f MHz 125 kHz 12 i
867.9 MHz 125 kHz 12 T
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Table 4 shows the channel plan for Europe the 868-MHz band used by the
global LoRaWAN network The Things Network. The channel plan lists used fre-
guencies, spreading factors, and bandwidths. All gateways on The Things Net-
work operating in Europe should use the above channel plan. As seen in the
channel plan, DR6 and DR7 are special data rates because they both only have

one channel to use. (21.)
3.6 Maximum payload size

Regional limitations also govern the maximum payload size. The maximum pay-
load size will depend on the data rate used. Higher data rates allow for bigger

messages to be transmitted.

TABLE 5. LoRaWAN maximum payload sizes with the repeater support. Col-

umn M is the maximum MACPayload size. (7.)

DataRate M N
0 59 51
1 59 51
2 59 51
3 123 115
4 230 222
5 230 222
G 230 222
T 230 222

8:15 Not defined

Table 7: EUE63-870 maximum payload size

For LoRaWAN, it is possible to use a repeater and when doing so it adds extra
information to the payload. This leads to a reduced maximum payload size. Ta-

ble 5 shows the relation between the data rate and payload size. (7.)

Size (bytes) 7.22 0.1 0N
MACPayload FHDR FPort FEMPayload

FIGURE 7. MACPayload structure. (15.)

The MACPayload structure (seen in figure 7) contains three different fields. A

frame header (FHDR) field contains information about the current frame and it
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contains an “FOpts” field which is used to send MAC commands with the nor-
mal user payload. The FOpts field can be absent or it can use as much as 15
bytes of message size. An FRMPayload is the actual user specified payload. In
the worst case scenario, the actual FRMPayload size is reduced by FHDR and
FPort fields. The resulting FRMPayload size would be reduced by 23 bytes.

(15.)

TABLE 6. LoRaWAN maximum payload size without the repeater support. Col-

umn M is the maximum MACPayload size. (7.)

DataRate M M
0 59 51
1 59 51
2 59 51
3 123 115
4 250 242
5 250 242
6 250 242
T 250 242

8:15 MNot defined

Table 8 : EU863-870 maximum payload size (not repeater compatible)

The repeater support is not mandatory. If a device does not plan to support re-
peaters, it can then increase its maximum payload size. The maximum mes-

sage size without the repeater support is listed in table 6. (7.)
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4 RANGE

LoRaWAN is advertised as a long range radio technology. The theoretical range
can be calculated with known equations and models but they will never match
real world testing. Real world testing will separate advertisements from reality
and give realistic values on which the device designer can then reference when

needed.

As the signals travel through air and objects, they will fade more before they
reach the receiver. The LoRa modulation has a benefit of being demodulated
below the noise floor with a negative SNR. The required SNR for demodulation
depends on a spreading factor and the spreading factor depends on the used
data rate. When testing for the range, the used data rate will have a great effect

on the transmission range.

Because LoRaWAN operates on a license-free ISM band, the transmitter power
output is limited by regulations. Devices operate on the maximum transmitting
power by default. The device transmission power cannot be increased to in-

crease the range. (7.)
4.1 Testing setup

To test LoORaWAN'’s range, the actual hardware was needed. MultiConnect
mDot and MultiConnect Conduit by Multi-Tech Systems were used (33, 34).
The hardware was provided by Etteplan Oy.

MDot is a small, Mbed OS enabled LoRaWAN module with an integrated radio
and microcontroller. MDot uses an SX1272 LoRa radio module made by Sem-
tech. For range testing, mDot was programmed with a testing software built with
Mbed OS with an integrated LoRaWAN stack. The testing application is simple.
It sets the data rate and sends a 10-byte-unconfirmed message and then waits
for 10 seconds and repeats the process. See appendix 1 for testing program
source code. The duty cycle was disabled for this test. MDot was powered from

a battery pack. (34).
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Conduit is a programmable gateway for 0T devices. A Conduit gateway can be
extended using mCard accessory plug-ins. A Multiconnect LoRa mCard was
used to turn Conduit into an LoRa gateway. Conduit can also be configured to
work as a packet forwarder for a bigger LoRaWAN network, such as The Thing
Network, or it can run a private LoORaWAN network server by itself. The later
was used in this test. Running a private LoRaWAN network is quick and easy to

setup, and results can be logged from the web interface. (33.)
Both Conduit and mDot were equipped with 3-dBi antennas.
4.2 Suburban range

For testing a range without line-of-sight, the gateway was positioned inside the
Etteplan office building. The end device was moved around by walking in the
surrounding suburban area with a smartphone logging position with timestamps.
LoRaWAN messages that arrived at the gateway are automatically
timestamped by the gateway. The timestamps from GPS logs and LoRaWAN
messages were then matched and the best results per data rate were drawn on
a map.

DRO: 0.83 km [,ow.\.»-sw""”‘ l ;‘

DR1: 0.83 km _ & Gntertny
DR2: 0.55 km _ akiveriaa .
DR3: 0.36 km

DR4: 0.55 km
DR5: 0.21 km

DR5

DR3
[ )

DR1

/ > DR4
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FIGURE 8. Suburban range.

Figure 8 shows the best results per data rate plotted on a map with the distance
to the gateway. Results show that lower data rates get a better range on aver-
age. Data rate 4 and data rate 3 had interesting results because in theory data
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rate 4 should have a shorter range than data rate 3. This is probably due to rap-
idly changing radio conditions as each transmission is 10 seconds apart and the

device is moving between obstacles.
4.3 Line-of-sight range

The Line-of-sight range was carried out with same testing hardware as in the ur-
ban range test. The gateway was mounted on top of a stationary car. The bat-
tery powered mDot was mounted on top of another car which was driving on
ice.

DRO: 1.51 km

DR1: 1.65 km

DR2:1.31 km

DR3: 1.22 km

DR4: 1.14 km
DR5: 0.89 km

Gateway
®

DR1
« DRO
DR5

DrRa DR3 DR2
L ]

FIGURE 9. First line-of-sight test.

Figure 9 shows the gateway positioned at the end of a road. The car with mDot
mounted on top of it was moving out to the sea. Getting the line-of-sight be-

tween the cars was challenging due to high snow banks. Antennas were barely
over the bank most of the time which had a great effect on the achieved range.
The best range was 1.51 km and it was received with data rate 1. A decision to

move gateway to a different position for the second test was done.
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FIGURE 10. Line-of-sight test, gateway repositioned.

The gateway was positioned to a different place when the car was coming back
to ashore (see figure 10). A single message with data rate 0 was received from
3.63 km away when there was a momentary line of sight before snow banks
started to block it again. Again, rapidly changing radio conditions were challeng-
ing and data did not directly correlate with the expected smaller data rate which
would yield a better range. More data is heeded to average out errors from the

rapidly changing link quality, but both test runs confirmed that data rates 0 and
1 receive the best range.
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5 POWER CONSUMPTION

Low power consumption is one of the biggest selling points for the LoRaWAN
technology. The battery life in excess of 10 years is being advertised. But what
limitations does battery life measured in years set to a device designer? (22.)

A device designer must be able to predict how long a device can operate from
different power sources and how to optimize the battery life. The LoRaWAN
class A specification has been designed with a battery operated device as its
main target. Implementing an ALOHA style messaging system, where the end
device will only send data when it is needed and radio is operated as a receiver
only shortly after each end device uplink, allows the device to sleep most of its
time because it does not have to listen to any events coming from the radio
downlink. (15.)

5.1 Test setup

To characterize the device power consumption, a device must be tested in real

operating conditions.

Two different tests were planned. One was to determine the module power con-
sumption without any radio usage. The other one was to test a module’s power
consumption while transmitting and receiving a message. The hardware used in

these tests was the same that was used in range testing.

MDot has its own development board where it is inserted for programming and
debugging. It is important to program a testing software using a development
board and then remove it for power consumption testing. As the development
board has extra electronics, measuring MDot’s power consumption from the de-
velopment board’s power consumption would yield incorrect results. Because of
this, MDot was always powered from an external power supply with a fixed volt-

age to keep results consistent.
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Fluke 87V
JBv

FIGURE 10. Static current measuring setup.

Measuring the power consumption of the device was done differently in each of
the tests. When measuring small static currents with no radio usage, a Fluke
87V multimeter was used. This multimeter has a 0.01uA resolution with +(0.2%
+ 2) accuracy. As all idle current tests draw constant power, results could be
logged with just pen and paper from the multimeter screen. Figure 10 illustrates

the measuring setup. (23.)

Nucleo
ADC REF ADC IN

L - -

Shunt resistor

3.6V MDot

FIGURE 11. Radio power consumption measurement setup.

Testing the radio’s power consumption was more complicated. Sending an Lo-
RaWAN message is too fast for a multimeter to react and to log results. This
problem was solved by using a STM NUCLEO-F411RE development board with
12-bit analog-to-digital converter (ADC) and a shunt resistor. The voltage drop
over the shunt resistor was measured by connecting it to the ADC reference
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voltage and to the ADC input (see figure 11). The ADC reading versus the ac-
tual current was then calibrated against the Fluke 87V multimeter and variable
current power supply. The calibration function was generated by Microsoft Excel
after manually collecting ADC readings and corresponding currents. The result-
ing function was then written into a sampling software which reads ADC at 200
Hz and then calculates the current and dumps it to a serial port for a computer
to logging (see appendix 2). This setup was tested against the Fluke 87V multi-
meter and had sub mA accuracy. This setup allows rapidly changing currents to

be accurately logged for a later analysis. (23, 24.)
5.2 Idle

Battery operated devices, which are meant to run for years, actually spend most
of their time sleeping and doing nothing. Therefore, it is very important to know
how much energy is being used when sleeping because this energy consump-
tion mode is where the device spends most of its time. Modern microprocessors
have several different options for power management and going through all of

them is out of scope.

A simple testing software was written using Mbed OS 5.8 to test processor’s op-
erating modes for power consumption. The testing software has preprocessor
flags to define what test to perform. The test software is compiled and flashed to
mDot. MDot is then removed and connected to the measuring setup. This was
repeated for all test cases. The program implementation can be found in appen-
dix 3.

TABLE 7. Power consumption for different idle modes.

Operating mode Current (mA)
While loop 15.05

Sleep 5.60

Deep slegp 0.42

Standby 0.034
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Table 7 shows four different tests that were done. The different processor
modes tested were; while loop, sleep, deep sleep and standby. The standby
mode shuts down the processor and memory, and all memory contents are lost,

with the exception of small a RTC backup memory area. (25.)
5.3 Radio

The radio power consumption testing was done with the shunt resistor setup de-
scribed earlier. A testing software was created to send fixed size messages at
fixed data rates (see appendix 1). The different test cases were: a confirmed
message with a 10-byte payload on data rates 0-5, an unconfirmed message
with 10-byte payload on data rates 0-5, and an unconfirmed message with 40-
byte payload on data rates 0-5. The radio is operating at the default transmit

power on all tests and the code rate is also default 4/5.

DRO 10 bytes

80

60

Current (mA)

——WUnconfirmed
a0 Confirmed

ot T

a 500 1000 1500 2000 2500 3000 3500

FIGURE 12. Raw data logged from serial.

All raw sampled data was logged and then processed using Microsoft Excel
(see figure 12 as an example). The total energy consumption in Joules was cal-

culated from each test scenario.
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Energy consumption vs. data rate
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Data rate

FIGURE 13. Energy consumption vs. data rate.

Figure 13 shows plotted data from all test cases. The plot shows clearly how
energy required to transmit data decreases with the increasing data rate. This is
because the increasing data rate shortens ToA of messages and thus the trans-

mitter has to be active for a shorter time.

Confirmed messages actually consume slightly less energy on higher data rates
because message confirmation happens on the RX1 window with the same set-
tings as the uplink before it. The message confirmation RX1 window is shorter
when the data rate increases and if confirmation is received during the RX1, the
fixed data rate 0 RX2 window will not be opened. Unconfirmed messages need
to open both receive windows even though no downlinks are coming and thus

wasting energy.

The difference between energy used on 10- and 40-byte payloads get smaller
as the data rate increases. The energy cost of transmitting 40 bytes at the data

rate 5 is almost equal to sending 10 bytes at the same data rate.
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5.4 Estimating power consumption

Because data rate and payload size are the two most important parameters that
affect radio’s power consumption, being able to estimate power the consump-
tion for given parameters is important. As seen in the previous tests, when the
radio is running at the default transmitting power and the code rate is default, its
power consumption while transmitting is steady. Energy consumption is linear to
the radio transmission time. By calculating the transmission time, the required

energy for the given transmission can be calculated quite accurately.

the LoRa modulation has 3 parameters which affect the message ToA: Spread-
ing factor, bandwidth, and code rate. The spreading factor and bandwidth to-
gether form a predetermined data rate specified by LoRaWAN regional parame-
ters. The code rate has no default value but 4/5 is used by the Mbed OS Lo-
RaWAN stack (26).

Radio PHY layer:
| Preambe | PHDR | PHOR CRC | PHYPayload | cCRC* |
Figure 5: Radio PHY structure ([CRC* is only available on uplink messages)
PHYPayload’
[ MHDR | MACPayioad | MIC |
or
[ MHDR | JoinRequest | miC |
or
[ MHDR  |Join-Response| mMiC |
Figure 6: PHY payload structure
MACPayload:
| FHDR | FPot [ FRMPayload |
Figure 7: MAC payload structure
FHDR:
| Devadar | rFom | FOnt | FOpts

Figure 8: Frame header structure

FIGURE 14. LoRaWAN message structure. (15.)

Each LoRaWAN message has a fixed format as seen in figure 14. Everything
except PHYPayload is automatically added by the physical layer. PHYPayload
is then broken down into several different fields. When performing an uplink
message, the MACPayload field is present with its MAC header (MHDR) and
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message integrity code (MIC). By determining the size of PHYPayload, the

message time-on-air can be calculated and power consumption estimated. (15.)

MHDR has a fixed size of 1 byte. MIC has also a fixed size of 4 bytes. The
frame header (FHDR) can vary its size if piggybacked MAC commands are pre-
sent in the FOpts field. As MAC commands are rarely used, it is assumed that
this frame does not contain any MAC commands. The FPort field is a fixed size
of 1 byte and is always present if FRMPayload is present. (15.)

FHDR fields have the following sizes: DevAddr 4 bytes, FCtrl 1 byte, and FCnt 2
bytes. FOpts is assumed to be absent. Therefore, one can calculate the size of
all MAC layer headers. By adding together all these fields, the total header
length is determined to be 13 bytes. (15.)

It is now evident that the PHYPayload size is 13 bytes + the user supplied pay-
load. To calculate the length of physical layer’s fields, such as the physical layer
header (PHDR), formula 3 can be used (5).

FORMULA 3

”_.'.I.J.'. load (CR+4), []i

_ " (BPL=45F + 28 + 16CRC = 20/H)
g+ .'nu.rltu.'rn'

4({5F = 2DE)

Where

Npayload = total physical layer payload size (symbols)
PL = payload size (byte)

SF = spreading factor (7-12)

CRC =1 if CRC is used, 0 if not

IH = 1 if implicit header mode, O if not

DE = data rate optimization, 1 if used, O if not
CR=coderate,1-4 (4/CR + 4)

To find out when the implicit header mode, CRC checking, and data rate optimi-
zation are used, one must check the SX1272 datasheet and the LoRaWAN

specification. The SX1272 datasheet mandates that the data rate optimization is
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used when using spreading factors 11 and 12 with 125-kHz bandwidth. The Lo-
RaWAN specification mandates that all uplink messages use an explicit packet
mode with CRC checking enabled. Table 8 lists all physical layer parameters re-

quired to calculate the payload length for each data rate. (5, 7.)

TABLE 8. Physical layer settings for each data rate.

Data rate

DE

IH

CRC

SF

BW

DRO

1

0

1

SF12

125 kHz

DR1

1

0

1

SF11

125 kHz

DR2

SF10

125 kHz

DR3

SF9

125 kHz

DR4

SF8

125 kHz

DR5

SF7

125 kHz

DR6

SF7

250 kHz

DR7

FSK

FSK

FSK

FSK

FSK

When the final physical layer payload size is known, the actual ToA can be cal-
culated. Time on air includes a preamble which has a length of 8 symbols (7).

Time on air for the payload can be calculated with formula 4 (5).

FORMULA 4

- _ - T
'r,': @y i ol '”_.'.I.J_'..' o I 3
Where

Tpayload = payload time on air (s)
Npayload = length of payload (symbols)

Ts = symbol time (s)

The symbol time can be calculated by first calculating the symbol rate with for-
mula 5 (5).
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FORMULA 5

=

E

Ry =

I-J
o
_

Where

Rs = symbol rate (symbols/s)
BW = bandwidth (Hz)
SF = spreading factor (7-12)

After having calculated the symbol rate, the actual symbol time can be calcu-
lated with formula 6 (5).

FORMULA 6

Where

Ts = symbol time (s)

Rs = symbol rate (symbols/s)

To complete time the on air calculation, the preamble must still be taken into ac-
count. Formula 7 can be used to calculate the time required to transmit the pre-
amble (5).

FORMULA 7
I

. _ s A FENT
preamble I-'”.I'.'.l'l.'.J mbie 4.23) 'r.'._'. m

Where

38



Tpreamble = preamble time on air (S)
Npreamble = pPreamble length (symbols)
Tsym = symbol time (s)

The total message time on air is then calculated with formula 8 (5).

FORMULA 8

packet 'r.r.'.n-.'.J mhle " "r.r.':.'_l'."u.-:.'..l'

Where

Tpacket = total message time on air (S)
Tpreamble = preamble time on air (S)

Tpayload = payload time on air (s)

TX time
o

54/3| 2 1 0

Currant

RECEIVE_DELAYZ2
B i Absentif
> RX1 received

¢ downlink
- o R Rx2
RECIVE_DELAY ! —‘-ﬂ [ .
Sleep current .
Time

FIGURE 15. Power consumption breakdown.

To calculate the total power consumption, the receiver time also needs to be
calculated. LoRaWAN will open two short receive windows after each uplink.
Receive windows are named RX1 and RX2. The RX1 is the first window to be

opened, and it uses the same radio settings as the uplink before it. The RX2 will
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only be opened when RX1 does not receive a downlink. The RX2 has fixed ra-
dio settings. The receive windows are opened after fixed delays. Delays are de-
fined as RECEIVE_DELAY1 for the RX1 and RECEIVE_DELAY2 for the RX2.
The RX2 uses the data rate 0 by default. RECEIVE_DELAY1 is defined as 1
second, and RECEIVE_DELAY?2 is defined as RECEIVE_DELAY1 + 1 second.
(7, 15))

The receiver needs 5 symbols to detect a preamble and synchronise its set-
tings. The Time required to receive these 5 symbols from the preamble de-
pends on the data rate used. Assuming that no downlink is received, the dura-
tion of the receive window can be calculated with formula 9. (27.)

Tix=5* Tsym FORMULA 9
Where

Trx = duration of receive window (s)

Tsym = symbol time (s)

When both transmitter and receiver durations are calculated, the actual energy
consumption can be calculated when the current consumption is known. One
must also account energy consumed when the device is sleeping between re-
ceive windows. Figure 15 illustrates how the device power consumption is con-
structed. To calculate energy consumed by a single packet transmission, for-

mula 10 is used. The formula 10 is only for unconfirmed messages. For estimat

ing the confirmed message energy consumption, one must ignore the RX2 win-
dow and estimate the RX2 duration by calculating time on air for incoming mes-

sage confirmation downlink.
Eunconfirmed = (Ttx Flx + Trxa * lex + T * Iix + Tsleep * |s|eep) *U FORMULA 10
Where

Eunconfirmed = €nergy used by unconfirmed message (J)
Tix = transmission time (s)
lix = transmit current (A)

Trxa = RX1 window duration (S)
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lix = receive current (A)

Tie = RX2 window duration (s)

Tsieep = time spent in sleep between receive windows (s)
Isieep = Sleep current (A)

U = voltage (V)

When the total message energy requirement is calculated (or measured), the
estimation can be done to determine how many messages would some particu-
lar battery provide. Since formula 10 gives the required energy in a standard
unit (Joule) and battery capacities are usually measured in milliampere hours
(mAh), a conversion is needed. Formula 11 will convert the battery nominal volt-

age and capacity in milliampere hours to energy.
E=U*Ah*3.6 FORMULA 11
Where

E = total energy stored in battery (J)
U = battery nominal voltage (V)

Ah = battery capacity (mAh)

TABLE 9. Measured energy consumption vs. calculated.

Data rate| Energy (measured) J | Energy (calculated) ] | Error % Messages (measured) Messages (calculated)
0 0.385747549 0.413486182 6.94 117590 109701
1 0.236866731 0.238295347 0.60 191500 190352
2 0.130397358 0.118849434 9.27 347860 381659
3 0.096397827 0.075051725 24.90 470550 604383
4 0.075068944 0.050498662 39.13 604245 808242
5 0.063734225 0.036895027 53.34 711706 1229434

Table 9 illustrates 10-byte unconfirmed messages being sent. The measured
energy usage is compared against the values calculated with formulas men-
tioned above. Errors are very small on lower data rates but increase radically
when the data rate increases. A message count is also calculated from both
measured and calculated values, comparing them to a 3500mAh 3.6V lithium-
ion battery. The calculation assumes that all energy from this battery is used

and that messages are sent immediately after each other. Even though the
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message count seems large, it does not mean that the device has a long bat-
tery life. A quick calculation for data rate 0, for example, gives around 100 hours
of battery life when assuming that each message takes around 3.5 seconds

(transmission time + RECEIVE_DELAY?2 + receive window 2 duration).

Semtech also provides a tool to calculate the LoRa modem power consumption.
Previously used calculations can be double checked against this calculator.
(28.)
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6 POWER OUTAGE

No discussion about battery powered devices is complete without those batter-
ies going dead. Every device will experience a power outage at a high certainty
during its lifetime. It may be the actual electrical grid going down or simply run-
ning out of battery. This chapter explores issues related to these occurrences

and how a device designer should work around them.

LoRaWAN has two different methods of connecting devices to a network; OTAA
and ABP. The OTAA device performs a handshake with the server in order to
join network. ABP devices have all encryption keys and device ids already in
the device memory and the same settings have been manually applied to the
network server as well. ABP devices do not do any kind of handshaking as they
can just start sending and receiving messages after powering up. After connec-
tion, the OTAA device will behave exactly like the device with the ABP connec-

tion. The differences come apparent on power outage situations. (15.)
6.1 ABP power outage

Because ABP does not do any handshaking when it connects, there is no way
to know when it is actually connected. When the ABP device loses its power, it
will also lose its packet counters if they are not backed up to the non-volatile

memory. (15.)

When the packet counters are reset back to 0 when the device powers back up,
even with correct keys, the LoRaWAN server will ignore its messages until the
packet counters are higher or equal the ones the server is expecting. If the de-
vice uses unconfirmed messages, the server will ignore all messages up to its
current packet counter count. If the device uses confirmed messages, it will
never get a confirmation as the server ignores the message. The only way to re-
store connections, if the device has lost its packet counters, is to reset them

manually at the server. (15.)
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6.2 OTAA power outage

The OTAA device will do actual handshake when it connects. Also, when con-
necting, both the server and end device will reset their packet counters to 0.
When the device using OTAA loses power, it will have no problem of getting
back to network. The OTAA connection also gives feedback to the device itself
that the connection has been established. (15.)

[ EndDevice | LoRa Network_

FIGURE 16. OTAA handshake. (29.)

Figure 16 illustrates the OTAA handshake flow. The end device initiates a join
procedure by sending a Join-Request message to the network server with re-
quired encryption keys. If the keys are correct, the network server will respond
with a Join-Accept message from which the actual encryption keys are derived.
When this message arrives to the end device, it knows that the connection to
the network server is working. The packet counters are now synchronized with

the end device and the network server. (15.)

Because devices are likely to perform a join procedure right after powering up,
there is a risk when a large amount of devices experience power outage at the
same time. When the power is restored, all devices will begin joining at the
same time. Devices using OTAA are probably using only 3 default join chan-
nels, thus possibly flooding them. The LoRaWAN specification implements a
back-off strategy when such situation happens. A device designer can try to
avoid these situations by joining after a randomized delay when powering up.
(15.)
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7 ADAPTIVE DATA RATE

Because the data rate has so great effect on the device radio power consump-
tion and on air time, LoRaWAN features a built-in mechanism for the adaptive
management of the end device data rate. The Adaptive data rate (ADR) aims to

minimize device on air times and to reduce wasted energy. (15.)

ADR can optimise the device power consumption while ensuring that it is still
being received by the gateway. When ADR is in use, the network server will in-
dicate to the end device that it should reduce its transmission power or increase

its data rate. In this way no energy and air time is wasted. (30.)
7.1 ADR implementation

ADR works by exploiting the fact that different data rates have different demod-
ulation margins. If messages are received with too much of a margin, energy is
wasted. (31.)

RSSI Data rate demodulation SNR Moise floor
DR5 DR6G
0R3 DR4 |-75dB|-7.5dB Avg. 20
-10 dB "
ey | DR2 |1250a8 'ESTE';’RF";”"‘S L SNR
-15 dB
-17.5dB “‘”’B ___________ -14dB
-1.5dB
dB B
1dB W,
———————————————————————————————————————————————————————— | Demodulation
3.5d8B (~ margin

A J

FIGURE 17. LoRa demodulation margins, and an example for ADR.

The LoRaWAN specification has a recommended implementation for an ADR
algorithm. The device will decide if it wants to use ADR or if it wants to handle
data rates by itself (although the device network server can also force device’s
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MAC layer to set or unset ADR bit). If the device wants the server to optimize its
data rate, it will set the ADR bit on its packet headers. the LoRaWAN server col-
lects 20 most recent transmissions for the device, which is requesting ADR. The
server then averages all collected message SNR values and then determines

how much margin there is. (30)

Figure 17 shows the LoRa demodulation SNRs and an example of the last 20
uplinks received by the server. The example uplinks are sent with DR1, and cal-
culating the average from them, results in -14dB SNR. As seen in this figure,
DR1 has a 3.5-dB demodulation margin when last uplinks were received with -
14dB. DR2 would have a 1-dB demodulation margin. The network server would
schedule a downlink with the MAC command for the end device to increase its
data rate to DR2. (31.)

One important aspect of ADR is that the network server only sends commands
to increase the end device’s data rate, and the end device will only decrease its
data rate by itself. When the network server calculates that the end device re-
guesting ADR has enough demodulation to use a higher data rate, it will just
send the MAC command. When the end device does not get confirmations or
any downlinks from the network server while using ADR, it will reduce its data

rate. The actual implementation is discussed in this chapter more in depth. (31.)
7.2 ADR challenges

ADR is not meant for every situation, and a designer preferring to use ADR
must know about its limitations. Using ADR on wrong situations or use cases
will lead to an excessive power consumption and a poor link quality. When ADR
is used correctly, it will yield the minimum possible power consumption for the

transmissions.
7.2.1 Moving devices

If the device is moving, and requesting a rate adaptation, the network server will
most likely fail to adjust its data rate correctly. The radio channel of moving de-

vices changes too fast and unpredictably to be correctly adjusted.
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The LoRaWAN specification also implies that moving devices should not use
ADR, but if the device can detect when it is stationary, it may then request a
rate adaptation until it starts moving again. Then unsetting ADR bit will cause
the network server to stop adapting its rate and to clean up previous packet

measurements. (15.)
7.2.2 Unconfirmed messages

Because rate adaptation MAC commands are sent by the gateway, working up-
links are required. If the device is only sending unconfirmed messages, and
there is a sudden change in the link quality (e.g. something blocking line-of-
sight, device relocated), the device will miss a lot of uplinks before adapting its
own rate. If the device has not heard any downlink for ADR_ACK_LIMIT up-
links, the device will have to set an ADRACKReq bit on its next uplinks until any
downlink is received. If the network does not respond within ADR_ACK_DELAY
uplinks, then the device can try to switch to a lower data rate. Every time
ADR_ACK_DELAY uplinks are reached, the device can lower its data rate.
ADK_ACK_LIMIT is defined as 64 and ADC_ACK_DELAY as 32 in LoRaWAN
regional specifications. (7, 15, 31.)

A worst case scenario is that the device has been using ADR and is currently
on DR5, and suddenly the link quality requires it to use DRO. This might result
that the device is sending (ADR_ACK_DELAY *5) + ADK_ACK_LIMIT uplinks
before regaining the connectivity. (15.)

7.2.3 Confirmed messages

The ARM Mbed OS LoRaWAN stack implements the recommended backoff
strategy for confirmed messages (32). When used with ADR, the network server
will increase the data rate exactly like the device sending unconfirmed mes-
sages, but reducing the data rate uses a different strategy than unconfirmed

messages.

TABLE 10. Data rate back-off for confirmed messages. (15.)
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Transmission nb

Data Rate

1 (first)

DR

DR

max(DR-1,0)

max(DR-1,0)

max(DR-2,0)

max(DR-2,0)

max(DR-3,0)

N O]

max(DR-3,0)

Table 10 shows the recommended data rate back-off strategy for confirmed

messages. A transmission nb stands for a retransmission count for the current

message. The retransmission count is configurable by the user. Using a higher

retransmission setting will result in unpredictable power consumption and will

possibly lead to a duty cycle starvation. If the retransmission count is not config-

ured for more than one transmission, the end device will never reduce its data

rate. The device will reduce its data rate when using confirmed messages, even
when ADR is not enabled. (15.)
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8 CONCLUSION

LoRaWAN technology has a narrow scope of use cases where it excels. De-
vices requiring long range communication with low data rates can take Lo-
RaWAN into consideration. To achieve a long battery life, the device designer
must be able to make compromises and be aware of design decisions that

might decrease the battery life of device on certain conditions.
8.1 Power consumption

The end device will be spending most of its life doing nothing, sleeping and
waiting for events or timers before doing anything. The most important aspect is
to optimize the sleep or deep sleep power consumption, where the device is
spending most of its time. Only after the sleep state power consumption is opti-
mized, other optimizations take place. It should be understood that when send-
ing an LoRaWAN message, most of the time is still spent waiting for receive
windows. The actual radio power consumption is quite small as sending only

lasts a few seconds at the best.
8.2 Connection method

OTAA should be used whenever possible. OTAA will give feedback that the de-
vice has actually connected and that it can send and receive messages. An
OTAA connection will handle power outages easily, as it resets packet counters
on a server when the connection has been established. When the device pow-
ers up, it has to do an OTAA handshake to be able to communicate with the
network, and all power outage problems are solved. The OTAA handshake con-
sists of only one uplink and one downlink, power consumption is similar to a sin-

gle confirmed message.
8.3 Channel plan

One should use all channels that gateways on the network are listening. More

channels on the channel plan also give a device more duty cycle, and decrease
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the probability of packet collisions. One should only use channels that the gate-
ways nearby are configured to listen, otherwise the device will experience a

packet loss due to a random channel selection.
8.4 Confirmed and unconfirmed messages

For devices sending messages periodically, on should use mainly unconfirmed
messages as they do not drain the duty cycle of a gateway and have more pre-
dictable power consumption. One should also periodically verify the connectivity
with confirmed messages. When confirmed messages are being used, the de-
signer must remember to select a retransmission count. Too many retransmis-
sions will the drain device’s battery and duty-cycle, too few will not the lower

data rate when retrying.

For devices, which only send a message when something happens, for exam-
ple a burglar alarm, one should use confirmed messages. Confirmed messages
also allow for self-diagnostics, giving device designer more information about

the connection status.
8.5 Data rate and ADR

If the device is static, one should always use ADR. ADR is meant for static de-
vices, and a static device will reduce its radio power consumption to the mini-
mum when using it. When using ADR with a static device, one should consider
mixing confirmed messages with unconfirmed to verify the connectivity and

quickly drop the data rate lower if no confirmation is received.

When the device is moving, a fixed data rate must be used. The device de-
signer should use a data rate as low as possible, as it should have the best
range. A low data rate will limit the device’s maximum payload size and its data
transfer rate even further with duty-cycle limitations. Payloads should be kept at
the minimum, and the maximum payload size should be kept in mind when de-

signing. Messages can be truncated if not.

The payload size should always be minimized so that it will not be fragmented.

Compression methods should be used to pack as much data on a single frame
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as possible. All frames have at least 13 bytes of overhead from the MAC layer
and then an additional overhead from a physical layer, thus minimizing the
sending of small messages and packing them up as one larger message will be

beneficial for the power consumption and duty cycle.
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TESTING APPLICATION APPENDIX 1/1

USE_ADR
PAYLOAD_LENGTH
ROTATE_DATARATE
DATARATE
SEND_INTERVAL
MESSAGE_TYPE

<stdio.h>

"mbed.h"

"lorawan/LoRaWANInterface.h"
"lorawan/system/lorawan_data_structures.h"
"events/EventQueue.h"

"mbed_trace.h"
ftdefine TRACE_GROUP "APP"

#include "trace_helper.h"
#include "lora_radio_helper.h"

using events;

uint8_t tx_buffer[LORAMAC_PHY_MAXPAYLOAD] = { @ };

t#define MAX_NUMBER_OF_EVENTS
#define CONFIRMED _MSG_RETRY_COUNTER

EventQueue ev_queue(MAX NUMBER_OF EVENTS * EVENTS_ EVENT SIZE);
lora_event_handler(lorawan_event t event);

LoRaWANInterface lorawan(radio);

lorawan_app_callbacks_t callbacks;

main (

setup_trace();

lorawan status t retcode;
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if (lorawan.initialize(&ev_queue) != LORAWAN_STATUS OK) {
printf("\r\n LoRa initialization failed! \r\n");
return -1;

printf("\r\n Mbed LoRaWANStack initialized \r\n");
callbacks.events = mbed::callback(lora_event_handler);
lorawan.add_app_callbacks(&callbacks);
retcode = lorawan.connect();
if (retcode == LORAWAN_STATUS OK ||

retcode == LORAWAN_STATUS_CONNECT_IN_PROGRESS) {
} else {

printf("\r\n Connection error, code = %d \r\n", retcode);
return -1;

printf("\r\n Connection - In Progress ...\r\n");

ev_queue.dispatch_forever();

return 0;

static void send_message()

{

intl6_t retcode;
static uint8_t rate = 0;

#if USE_ADR

if (lorawan.enable_adaptive datarate() != LORAWAN_STATUS OK) {
printf("\r\n enable adaptive datarate failed! \r\n");
return;

}

printf("\r\n Adaptive data rate (ADR) - Enabled \r\n");

#elif IUSE ADR
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if (lorawan.disable adaptive datarate() != LORAWAN_STATUS OK) {
printf("disable_adaptive_datarate failed! \r\n");
return;

}
printf("ADR DISABLED\r\n");

#if ROTATE_DATARATE
if (rate > 5) rate = 0;

if (lorawan.set_datarate(rate) != LORAWAN_STATUS_OK) {
printf("set_datarate failed! \r\n");
return;

rate++;
#telse

if (lorawan.set_datarate(DATARATE) != LORAWAN_STATUS OK) {
printf("set_datarate failed! \r\n");
return;

#endif
printf("SET_DATARATE OK\r\n");
#endif

retcode = lorawan.send(MBED_CONF_LORA_APP_PORT, tx_buffer, PAYLOAD_LENGTH,
MESSAGE_TYPE) ;

if (retcode < 0) {
retcode == LORAWAN_STATUS WOULD BLOCK ? printf("send - WOULD BLOCK\r\n")
: printf("\r\n send() - Error code %d \r\n", retcode);
return;

printf("\r\n %d bytes scheduled for transmission \r\n", retcode);

static void lora_event_handler(lorawan_event_t event)
{
switch (event) {
case CONNECTED:
printf("\r\n Connection - Successful \r\n"
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ev_queue.call every(SEND_INTERVAL, send_message);
break;
case DISCONNECTED:
ev_queue.break dispatch();
printf("\r\n Disconnected Successfully \r\n");
break;
case TX_DONE:
printf("\r\n Message Sent to Network Server \r\n");
break;
case TX_TIMEOUT:
case TX_ERROR:
case TX_CRYPTO_ERROR:
case TX_SCHEDULING_ERROR:
printf("\r\n Transmission Error - EventCode = %d \r\n", event);
break;
case RX_DONE:
printf("\r\n Received message from Network Server \r\n");
break;
case RX_TIMEOUT:
case RX_ERROR:
printf("\r\n Error in reception - Code = %d \r\n", event);
break;
case JOIN_FAILURE:
printf("\r\n OTAA Failed - Check Keys \r\n");
break;
default:
MBED_ASSERT ("Unknown Event");
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#tinclude "mbed.h"

AnalogIn input(A9);
Serial pc(USBTX, USBRX);

main()
pc.baud(115200);

while(1) {
ma = (-233.21f * input.read()) + 233.11f;
pc.printf("%f\r\n", ma);
wait_ms(5);
}

return 0;
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#define TEST_LOOP
#tinclude "mbed.h"

#include "SX1272_ LoRaRadio.h"
#include "lorawan_data_structures.h"

sleep_radio() {

SX1272_LoRaRadio radio(LORA_MOSI, LORA_MISO, LORA_SCK, LORA _NSS, LORA RESET,
LORA_DIO@, LORA_DIO1, LORA_DIO2, LORA DIO3, LORA_DIO4,
LORA_DIO5, NC, NC, LORA_TXCTL, LORA RXCTL, NC, NC);

radio_events_t test;

radio.init_radio(&test);
radio.sleep();

sleep_flash() {
SPI flash(SPI3_MOSI, SPI3_MISO, SPI3_SCK);
flash.format(8, 9);

DigitalOut flash_cs(SPI3_CS);

flash_cs = 0;
flash.write(0xB9);
flash_cs = 1;

main() {

sleep_radio();
sleep_flash();

#ifdef TEST_LOOP
while(1) {

}
#tendif

#ifdef TEST_SLEEP

while(1) {
wait(100);

}

#endif

#ifdef TEST DEEPSLEEP
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while(1) {
hal_deepsleep();

}
#tendif

#ifdef TEST_STANDBY
while(1) {

HAL_PWR_EnterSTANDBYMode();

}
#tendif

return 0;




