Compare commits

...

31 Commits

Author SHA1 Message Date
Joerg Lehmann cee3752349 some changes 2022-05-21 17:40:50 +02:00
Joerg Lehmann c3aa3b7845 with fixed ADC code 2020-08-04 16:19:15 +02:00
Joerg Lehmann 3bb6edd1e8 only format code 2020-08-04 16:16:30 +02:00
Joerg Lehmann 0aa2c11402 try with other nau7802 settings because of rare wrong readings 2020-07-21 14:27:58 +02:00
Joerg Lehmann 7ef7d25693 try some nau7802 settings because of rare wrong readings 2020-07-21 10:33:14 +02:00
Joerg Lehmann 1f0072797f millis() is unsigned long 2020-07-14 19:45:25 +02:00
Joerg Lehmann cfaccfb14a plausibility checks, eliminiate NOT_ATTACHED 2020-07-01 13:11:56 +02:00
Joerg Lehmann 90782229d5 fix bug 2020-07-01 11:11:16 +02:00
Joerg Lehmann 363e8ecc23 read sensors a second time if values do not seem plausible 2020-07-01 11:05:25 +02:00
Joerg Lehmann 924ec0719f handle scale timeouts better 2020-06-30 09:51:57 +02:00
Joerg Lehmann 3cf651b338 bug fix 2020-06-29 21:50:23 +02:00
Joerg Lehmann 0c553eed56 confirmed only if big difference in weight 2020-06-29 21:13:36 +02:00
Joerg Lehmann fecc1bf67b fix bug with last_values 2020-06-29 20:51:59 +02:00
Joerg Lehmann ddec85f57e fix bug with last_values 2020-06-29 20:10:04 +02:00
Joerg Lehmann 2ebcac04b7 enhance debug message 2020-06-29 17:57:01 +02:00
Joerg Lehmann 592bccdeb5 wait longer for sending to happen 2020-06-29 17:09:11 +02:00
Joerg Lehmann 3028836e2f try to make measurements more stable... 2020-06-29 16:54:59 +02:00
Joerg Lehmann f846c0d82a README update 2020-06-29 15:59:46 +02:00
Joerg Lehmann 875b1fef02 do not go to deep sleep if we do a stop_iterations 2020-06-12 19:54:43 +02:00
Joerg Lehmann 9cc59aadbb new release with patched library Catena-Arduino-Platform 2020-06-12 15:46:22 +02:00
Joerg Lehmann 22982235fb do not send on first position 2020-06-08 20:40:57 +02:00
Joerg Lehmann 23de8b8f4b use SF12 for initial Join 2020-06-08 16:06:52 +02:00
Joerg Lehmann f0b4b0d286 add delay after wakeup of deep sleep; add command calibrate_scales 2020-06-08 14:29:34 +02:00
Joerg Lehmann 3a8764dcb4 avoid recursion 2020-06-06 19:34:47 +02:00
Joerg Lehmann 57d795c36b 20200605 2020-06-06 08:37:28 +02:00
Joerg Lehmann d0a173a54a 20200604 2020-06-04 20:16:01 +02:00
Joerg Lehmann a8fe52fa0e reduce timeout again to 300sec, but sleep 10sec after timeout 2020-06-03 17:05:46 +02:00
Joerg Lehmann eb4da9d637 add debugging info, bug fix 2020-06-03 16:04:47 +02:00
Joerg Lehmann a4c0c71e54 README: patch arduino-lmic to use SF10 2020-06-03 10:37:26 +02:00
Joerg Lehmann fcfc596506 increase timeout from 300 to 900 seconds 2020-06-03 08:56:10 +02:00
Joerg Lehmann 59ce7ee44d 20200602 2020-06-02 21:21:05 +02:00
4 changed files with 220 additions and 197 deletions

View File

@ -20,9 +20,9 @@ Das sind die verwendeten Libraries [1]:
| --- | ----- | ----------- |
| https://github.com/mcci-catena/Adafruit_BME280_Library.git | 3dafbe1 | Wed, 13 Dec 2017 13:56:30 -0500 |
| https://github.com/mcci-catena/Adafruit_Sensor.git | f2af6f4 | Tue, 1 Sep 2015 15:57:59 +0200 |
| https://github.com/mcci-catena/arduino-lmic.git | 6fe04ec | Tue, 12 May 2020 09:16:47 -0400 |
| https://github.com/mcci-catena/arduino-lmic.git | 9191f0c | Tue, 30 Jun 2020 09:56:19 -0400 |
| https://github.com/mcci-catena/arduino-lorawan.git | 4bc0d48 | Sat, 9 May 2020 12:38:28 -0400 |
| https://github.com/mcci-catena/Catena-Arduino-Platform.git | 92019ca | Tue, 12 May 2020 01:34:08 -0400 |
| https://github.com/mcci-catena/Catena-Arduino-Platform.git | 7620a89 | Fri, 31 Jul 2020 14:14:30 -0400 |
| https://github.com/mcci-catena/Catena-mcciadk.git | a428006 | Sat, 21 Dec 2019 20:45:26 -0500 |
| https://github.com/mcci-catena/MCCI_FRAM_I2C.git | f0a5ea5 | Sat, 21 Dec 2019 16:17:01 -0500 |
| https://github.com/tatobari/Q2-HX711-Arduino-Library.git | ccda8d8 | Wed, 13 Mar 2019 12:41:44 -0300 |
@ -31,5 +31,45 @@ Das sind die verwendeten Libraries [1]:
| https://github.com/mcci-catena/SHT1x.git | be7042c | Tue, 20 Sep 2011 13:56:23 +1000 |
Patch arduino-lmic, so initial SF12 is used initially:
`
[joerg@cinnamon src]$ git diff
diff --git a/src/lmic/lmic_bandplan_eu868.h b/src/lmic/lmic_bandplan_eu868.h
index efff7d5..74efb37 100644
--- a/src/lmic/lmic_bandplan_eu868.h
+++ b/src/lmic/lmic_bandplan_eu868.h
@@ -61,7 +61,7 @@ LMICeu868_isValidBeacon1(const uint8_t *d) {
#undef LMICbandplan_isFSK
#define LMICbandplan_isFSK() (/* RX datarate */LMIC.dndr == EU868_DR_FSK)
-#define LMICbandplan_getInitialDrJoin() (EU868_DR_SF7)
+#define LMICbandplan_getInitialDrJoin() (EU868_DR_SF12)
void LMICeu868_setBcnRxParams(void);
#define LMICbandplan_setBcnRxParams() LMICeu868_setBcnRxParams()
`
`[1]:
[joerg@cinnamon libraries]$ for i in Adafruit_BME280_Library Adafruit_Sensor arduino-lmic arduino-lorawan Catena-Arduino-Platform Catena-mcciadk MCCI_FRAM_I2C Q2-HX711-Arduino-Library SparkFun_Qwiic_Scale_NAU7802_Arduino_Library OneWire SHT1x ; do cd $i; echo "| $(git remote -v |grep fetch |awk '{print $2}' |tr '\n' ' ') | $(git log --pretty=format:'%h | %cD ' -n 1) |" ; cd ..; done`
## Some Facts about RSSI and SNR
https://lora.readthedocs.io/en/latest/#rssi
RSSI minimum = -120 dBm.
RSSI < -90 dBm: this signal is extremely weak, at the edge of what a receiver can receive.
RSSI -67dBm: this is a fairly strong signal.
RSSI > -55dBm: this is a very strong signal.
RSSI > -30dBm: your sniffer is sitting right next to the transmitter.
https://lora.readthedocs.io/en/latest/#snr
Typical LoRa SNR values are between: -20dB and +10dB
A value closer to +10dB means the received signal is less corrupted.
LoRa can demodulate signals which are -7.5 dB to -20 dB below the noise floor.

View File

@ -60,6 +60,7 @@ cCommandStream::CommandFn cmdGetScaleA;
cCommandStream::CommandFn cmdGetScaleB;
cCommandStream::CommandFn cmdCalibrateZeroScaleA;
cCommandStream::CommandFn cmdCalibrateZeroScaleB;
cCommandStream::CommandFn cmdCalibrateScales;
cCommandStream::CommandFn cmdCalibrateScaleA;
cCommandStream::CommandFn cmdCalibrateScaleB;
cCommandStream::CommandFn cmdSetDebugLevel;
@ -72,6 +73,7 @@ static const cCommandStream::cEntry sMyExtraCommmands[] =
{ "hello", cmdHello },
{ "get_calibration_settings", cmdGetCalibrationSettings },
{ "get_sensor_readings", cmdGetSensorReadings },
{ "calibrate_scales", cmdCalibrateScales },
{ "calibrate_zero_scale_a", cmdCalibrateZeroScaleA },
{ "calibrate_zero_scale_b", cmdCalibrateZeroScaleB },
{ "calibrate_scale_a", cmdCalibrateScaleA },
@ -99,7 +101,7 @@ sMyExtraCommands_top(
\****************************************************************************/
byte my_position = 0; // what is our actual measurement, starts with 0
long timer_pos0;
unsigned long timer_pos0;
// Global Variables
LORA_data lora_data;
@ -110,6 +112,7 @@ long iteration = 0; // what iteration number do we have, starts with 0
long package_counter = 0; // sent package counter
bool send_in_progress = false;
bool stop_iterations = false;
bool start_new_iteration = false;
bool next_package_is_init_package = true;
uint32_t gRebootMs;
@ -147,18 +150,13 @@ bool fUsbPower;
static osjob_t iterationJob;
static osjob_t sendJob;
// the cycle time to use
unsigned gTxCycle;
// remaining before we reset to default
unsigned gTxCycleCount;
void setup(void)
{
gCatena.begin();
setup_platform();
SetupScales(config_data.debug_level);
ClearLoraData();
ClearLoraData(true);
setup_bme280();
setup_flash();
@ -251,7 +249,6 @@ void setup_platform(void)
}
gLoRaWAN.SetReceiveBufferBufferCb(receiveMessage);
setTxCycleTime(CATCFG_T_CYCLE_INITIAL, CATCFG_INTERVAL_COUNT_INITIAL);
gCatena.registerObject(&gLoRaWAN);
/* find the platform */
@ -346,6 +343,9 @@ void setup_uplink(void)
LMIC_setClockError(1 * 65536 / 100);
// explicitly enable LinkCheckMode
gLoRaWAN.SetLinkCheckMode(true);
/* figure out when to reboot */
gRebootMs = (CATCFG_T_REBOOT + os_getRndU2() - 32768) * 1000;
@ -377,9 +377,12 @@ void setup_uplink(void)
void loop()
{
gCatena.poll();
if (start_new_iteration) {
StartNewIteration();
}
}
void ClearLoraData(void)
void ClearLoraData(bool clearLastValues)
{
lora_data.version = LORA_DATA_VERSION;
lora_data.vbat = 0;
@ -409,13 +412,15 @@ void ClearLoraData(void)
my_position = 0;
// We initialize last_sensor_reading
last_sensor_reading.vbat = 0;
last_sensor_reading.weight1 = 0;
last_sensor_reading.weight2 = 0;
last_sensor_reading.weight = 0;
last_sensor_reading.temperature = 0;
last_sensor_reading.humidity = 0;
last_sensor_reading.pressure = 0;
if (clearLastValues) {
last_sensor_reading.vbat = 0;
last_sensor_reading.weight1 = 0;
last_sensor_reading.weight2 = 0;
last_sensor_reading.weight = 0;
last_sensor_reading.temperature = 0;
last_sensor_reading.humidity = 0;
last_sensor_reading.pressure = 0;
}
}
void ShowLORAData(bool firstTime)
@ -501,7 +506,7 @@ uint8_t GetVBatValue(int millivolts)
void DoDeepSleep(uint32_t sleep_time)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("DoDeepSleep, now going to deep sleep\n");
gCatena.SafePrintf("DoDeepSleep, now going to deep sleep, millis: %d\n", millis());
}
// Prepare Deep Sleep
@ -518,13 +523,19 @@ void DoDeepSleep(uint32_t sleep_time)
deepSleepRecovery();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("done with deep sleep\n");
gCatena.SafePrintf("done with deep sleep, millis: %d\n", millis());
}
}
void ReadSensors(SENSOR_data &sensor_data) {
// Returns true if measurements are plausible, otherwise false
bool ReadSensors(SENSOR_data &sensor_data) {
bool plausible;
bool plausible_a;
bool plausible_b;
SENSOR_data res;
int32_t weight_current32;
int32_t weight_current32_a;
int32_t weight_current32_b;
long w1_0_real;
long w2_0_real;
@ -542,29 +553,13 @@ void ReadSensors(SENSOR_data &sensor_data) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LoadCell is ready.\n");
}
if (config_data.cal_w1_0 != NOT_ATTACHED) {
res.weight1 = (int32_t)ReadScale('A');
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 1 weight1_current: %ld\n", res.weight1);
}
} else {
res.weight1 = 0;
w1_0_real = 0;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 1 is disabled\n");
}
res.weight1 = (int32_t)ReadScale('A');
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 1 weight1_current: %ld\n", res.weight1);
}
if (config_data.cal_w2_0 != NOT_ATTACHED) {
res.weight2 = (int32_t)ReadScale('B');
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 2 weight2_current: %ld\n", res.weight2);
}
} else {
res.weight2 = 0;
w2_0_real = 0;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 2 is disabled\n");
}
res.weight2 = (int32_t)ReadScale('B');
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 2 weight2_current: %ld\n", res.weight2);
}
}
else {
@ -577,18 +572,32 @@ void ReadSensors(SENSOR_data &sensor_data) {
PowerdownScale();
// Gewicht berechnen
weight_current32 = (int32_t)((((res.weight1 - w1_0_real) / config_data.cal_w1_factor) + ((res.weight2 - w2_0_real) / config_data.cal_w2_factor)) / 5.0);
weight_current32_a = (int32_t)((res.weight1 - w1_0_real) / config_data.cal_w1_factor);
weight_current32_b = (int32_t)((res.weight2 - w2_0_real) / config_data.cal_w2_factor);
weight_current32 = (int32_t)((weight_current32_a + weight_current32_b) / 5.0);
// we check if weights are plausible
plausible_a = (weight_current32_a > -10000) && (weight_current32_a < 150000);
plausible_b = (weight_current32_b > -10000) && (weight_current32_b < 150000);
plausible = (plausible_a && plausible_b);
if (weight_current32 < 0) {
weight_current32 = 0;
if (plausible) {
weight_current32 = 0;
}
} else if (weight_current32 > UINT16_MAX) {
//weight_current32 = UINT16_MAX;
// we set the weight to 0, as such high values are not realistic and probably a sign for bad calibration...
weight_current32 = 0;
}
if (config_data.cal_w1_0 == NOT_ATTACHED || config_data.cal_w2_0 == NOT_ATTACHED) {
// when at least one load cell is disabled, we multiply the measured weight by 2
weight_current32 = weight_current32 * 2;
if (!plausible) {
weight_current32 = NOT_PLAUSIBLE_16;
if (!plausible_a) {
res.weight1 = NOT_PLAUSIBLE_32;
}
if (!plausible_b) {
res.weight2 = NOT_PLAUSIBLE_32;
}
}
res.weight = (uint16_t)weight_current32;
@ -616,9 +625,11 @@ void ReadSensors(SENSOR_data &sensor_data) {
}
sensor_data = res;
return plausible;
}
void StartNewIteration() {
start_new_iteration = false;
uint32_t wait_time;
wait_time = 0;
@ -626,7 +637,18 @@ void StartNewIteration() {
iteration++;
SENSOR_data current_sensor_reading;
ReadSensors(current_sensor_reading);
if (!ReadSensors(current_sensor_reading)) {
// we try a second time if Readings do not seem plausible
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Readings do not seem plausible, try a second time\n");
}
delay(500);
if (!ReadSensors(current_sensor_reading)) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Readings do not seem plausible for a second time, we give up!\n");
}
}
}
int16_t temp_change;
// vBus
@ -675,25 +697,27 @@ void StartNewIteration() {
// we send data the first time the system is started, when the array is full
// or when the weight has fallen more than threshold or the first measurement is
// more than one hour old (which should not happen :-) )
if ( (next_package_is_init_package) || (my_position >= MAX_VALUES_TO_SEND) || (abs(last_sensor_reading.weight - current_sensor_reading.weight) > SEND_DIFF_THRESHOLD_5GRAMS) || ((millis() - timer_pos0) > 3600000)) {
bool big_difference = (abs(last_sensor_reading.weight - current_sensor_reading.weight) > SEND_DIFF_THRESHOLD_5GRAMS);
if ( (next_package_is_init_package) || (my_position >= MAX_VALUES_TO_SEND) || (big_difference) || ((millis() - timer_pos0) > 3600000)) {
lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60);
if (config_data.debug_level > 0) {
gCatena.SafePrintf("startSendingUplink(), my_position: %d, iteration: %d, package_counter: %d\n", my_position, iteration, package_counter);
gCatena.SafePrintf("startSendingUplink(), my_position: %d, iteration: %d, package_counter: %d, big_difference: %d\n", my_position, iteration, package_counter, big_difference);
}
// the first <INIT_PACKETS> packets are "Init-Packets" or each INIT_PACKAGE_INTERVAL ...
startSendingUplink(next_package_is_init_package);
// send confirmed if big_difference in weight
startSendingUplink(next_package_is_init_package, big_difference);
next_package_is_init_package = ((iteration < INIT_PACKETS) || ((package_counter % INIT_PACKAGE_INTERVAL) == 0));
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::TwoShort);
}
// Loop sending is in progress, timeout just in case after 300 seconds
long start_time = millis();
// Loop sending is in progress, timeout just in case after 600 seconds
unsigned long start_time = millis();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("waiting while send is in progress\n");
}
while (send_in_progress && ((millis() - start_time) < 300000))
while (send_in_progress && ((millis() - start_time) < 600000))
{
gCatena.poll();
yield();
@ -704,6 +728,14 @@ void StartNewIteration() {
gCatena.SafePrintf("looks like we timed out waiting for sending to finish...\n", wait_time);
}
LMIC_clrTxData();
// we sleep 10 seconds...
start_time = millis();
while ((millis() - start_time) < 10000)
{
gCatena.poll();
yield();
}
send_in_progress = false;
}
wait_time = (uint32_t)((millis() - start_time) / 1000);
@ -715,6 +747,9 @@ void StartNewIteration() {
if (not(next_package_is_init_package)) {
// we make the current sensor reading to the last one...
last_sensor_reading = current_sensor_reading;
} else {
// we only copy the last weight
last_sensor_reading.weight = current_sensor_reading.weight;
}
uint32_t sleep_time_sec;
@ -755,27 +790,31 @@ void StartNewIteration() {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just before Sleeping: %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
if (!fUsbPower) {
if (!fUsbPower && !stop_iterations) {
DoDeepSleep(sleep_time_sec);
if (! stop_iterations) {
StartNewIteration();
start_new_iteration = true;
}
}
else {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("light sleep; os_setTimedCallback for startNewIterationCb in %d...seconds\n", sleep_time_sec);
if (! stop_iterations) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("light sleep; os_setTimedCallback for startNewIterationCb in %d...seconds\n", sleep_time_sec);
}
os_setTimedCallback(
&iterationJob,
os_getTime() + sec2osticks(sleep_time_sec),
startNewIterationCb);
}
os_setTimedCallback(
&iterationJob,
os_getTime() + sec2osticks(sleep_time_sec),
startNewIterationCb);
}
}
void startSendingUplink(bool firstTime)
void startSendingUplink(bool firstTime, bool confirmed)
{
send_in_progress = true;
@ -799,22 +838,50 @@ void startSendingUplink(bool firstTime)
fConfirmed = true;
}
// we can overwrite fConfirmed
if (confirmed) {
fConfirmed = true;
}
if (firstTime) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("SendBuffer firstTime\n");
}
gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
package_counter++;
if (gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort)) {
package_counter++;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just after SendBuffer (successful): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
}
else {
gCatena.SafePrintf("LMIC.opmode just before SendBuffer (failed): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
} else {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just before SendBuffer: %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
gCatena.SafePrintf("SendBuffer not firstTime\n");
}
gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
package_counter++;
if (gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort)) {
package_counter++;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just after SendBuffer (successful): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
} else {
gCatena.SafePrintf("LMIC.opmode just before SendBuffer (failed): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
}
ClearLoraData();
ClearLoraData(false);
}
static void sendBufferDoneCb(
@ -876,7 +943,7 @@ void doSleepAlert(const bool fDeepSleep)
}
for (int i = 0; i <= 15; i++) {
long prevPrint = millis();
unsigned long prevPrint = millis();
while (os_queryTimeCriticalJobs(ms2osticks(2000)) != 0)
{
gCatena.poll();
@ -890,45 +957,12 @@ void doSleepAlert(const bool fDeepSleep)
}
}
// we wait an extra five seconds...
//uint32_t tNow = millis();
//while (uint32_t(millis() - tNow) < 5000)
//{
// gCatena.poll();
// yield();
//}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Now it is safe to go to sleep\n");
}
}
void updateSleepCounters(void)
{
// update the sleep parameters
if (gTxCycleCount > 1)
{
// values greater than one are decremented and ultimately reset to default.
--gTxCycleCount;
}
else if (gTxCycleCount == 1)
{
// it's now one (otherwise we couldn't be here.)
if (config_data.debug_level > 0) {
gCatena.SafePrintf("resetting tx cycle to default: %u\n", CATCFG_T_CYCLE);
}
gTxCycleCount = 0;
gTxCycle = CATCFG_T_CYCLE;
}
else
{
// it's zero. Leave it alone.
}
}
static void settleDoneCb(
osjob_t* pSendJob)
{
@ -946,9 +980,6 @@ static void settleDoneCb(
doSleepAlert(fDeepSleep);
/* count what we're up to */
updateSleepCounters();
send_in_progress = false;
}
@ -979,14 +1010,12 @@ static void startNewIterationCb(osjob_t* pJob)
}
if (! stop_iterations) {
StartNewIteration();
start_new_iteration = true;
}
}
static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage)
{
unsigned txCycle;
unsigned txCount;
long cal_w1_0;
long cal_w2_0;
@ -1102,59 +1131,8 @@ static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage
}
}
if (port == 0)
{
return;
}
else if (! (port == 1 && 2 <= nMessage && nMessage <= 3))
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("invalid message port(%02x)/length(%x)\n",
port, nMessage
);
}
return;
}
txCycle = (pMessage[0] << 8) | pMessage[1];
if (txCycle < CATCFG_T_MIN || txCycle > CATCFG_T_MAX)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("tx cycle time out of range: %u\n", txCycle);
}
return;
}
// byte [2], if present, is the repeat count.
// explicitly sending zero causes it to stick.
txCount = CATCFG_INTERVAL_COUNT;
if (nMessage >= 3)
{
txCount = pMessage[2];
}
setTxCycleTime(txCycle, txCount);
}
void setTxCycleTime(unsigned txCycle, unsigned txCount)
{
if (txCount > 0) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("message cycle time %u seconds for %u messages\n", txCycle, txCount);
}
}
else if (config_data.debug_level > 0) {
gCatena.SafePrintf("message cycle time %u seconds indefinitely\n", txCycle);
}
gTxCycle = txCycle;
gTxCycleCount = txCount;
}
/* process "application hello" -- args are ignored */
// argv[0] is "hello"
// argv[1..argc-1] are the (ignored) arguments
@ -1165,7 +1143,6 @@ cCommandStream::CommandStatus cmdHello(cCommandStream * pThis, void *pContext, i
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream * pThis, void *pContext, int argc, char **argv)
{
pThis->printf("{\n");
@ -1230,20 +1207,33 @@ cCommandStream::CommandStatus cmdCalibrateZeroScaleB(cCommandStream * pThis, voi
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateScales(cCommandStream * pThis, void *pContext, int argc, char **argv)
{
String s_cal_w1_0(argv[1]);
String s_cal_w1_factor(argv[2]);
String s_cal_w2_0(argv[3]);
String s_cal_w2_factor(argv[4]);
config_data.cal_w1_0 = s_cal_w1_0.toInt();
config_data.cal_w1_factor = s_cal_w1_factor.toFloat();
config_data.cal_w2_0 = s_cal_w2_0.toInt();
config_data.cal_w2_factor = s_cal_w2_factor.toFloat();
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_scales was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateScaleA(cCommandStream * pThis, void *pContext, int argc, char **argv)
{
String w1_gramm(argv[1]);
long weight1;
if (w1_gramm == "NA") {
// scale a is not connected
config_data.cal_w1_factor = 1.0;
config_data.cal_w1_0 = NOT_ATTACHED;
} else {
setup_scales();
weight1 = ReadScale('A');
config_data.cal_w1_factor = (float)((weight1 - config_data.cal_w1_0) / w1_gramm.toFloat());
}
setup_scales();
weight1 = ReadScale('A');
config_data.cal_w1_factor = (float)((weight1 - config_data.cal_w1_0) / w1_gramm.toFloat());
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data));
@ -1257,15 +1247,9 @@ cCommandStream::CommandStatus cmdCalibrateScaleB(cCommandStream * pThis, void *p
String w2_gramm(argv[1]);
long weight2;
if (w2_gramm == "NA") {
// scale b is not connected
config_data.cal_w2_factor = 1.0;
config_data.cal_w2_0 = NOT_ATTACHED;
} else {
setup_scales();
weight2 = ReadScale('B');
config_data.cal_w2_factor = (float)((weight2 - config_data.cal_w2_0) / w2_gramm.toFloat());
}
setup_scales();
weight2 = ReadScale('B');
config_data.cal_w2_factor = (float)((weight2 - config_data.cal_w2_0) / w2_gramm.toFloat());
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data));

View File

@ -56,7 +56,7 @@ enum {
|
\****************************************************************************/
static const int32_t fwVersion = 20200601;
static const int32_t fwVersion = 20200804;
static const byte INIT_PACKAGE_INTERVAL = 100; // send an init package every 100 packages;
static const byte MAX_VALUES_TO_SEND = 8;
@ -65,7 +65,8 @@ static const uint8_t LORA_DATA_VERSION = 1;
static const uint8_t LORA_DATA_VERSION_FIRST_PACKAGE = 128;
static const uint32_t PRESSURE_OFFSET = 825;
static const uint16_t SEND_DIFF_THRESHOLD_5GRAMS = 20; // when weight changes by 100g, then send data
static const long NOT_ATTACHED = -2147483648;
static const long NOT_PLAUSIBLE_16 = 65535;
static const long NOT_PLAUSIBLE_32 = 2147483647;
static const byte INIT_PACKETS = 5;
// must be 64 bytes long (size of kAppConf)

View File

@ -10,7 +10,6 @@
#define SAMPLES 5
NAU7802 myScale; //Create instance of the NAU7802 class
byte debug_level;
@ -27,14 +26,10 @@ bool InitializeScales()
result = myScale.reset(); //Reset all registers
result &= myScale.powerUp(); //Power on analog and digital sections of the scale
result &= myScale.setIntPolarityHigh();
result &= myScale.setLDO(NAU7802_LDO_3V3); //Set LDO to 3.3V
result &= myScale.setGain(NAU7802_GAIN_128); //Set gain to 128
result &= myScale.setSampleRate(NAU7802_SPS_40); //Set samples per second to 40
result &= myScale.setRegister(NAU7802_ADC, 0x30); //Turn off CLK_CHP. From 9.1 power on sequencing.
result &= myScale.clearBit(NAU7802_PGA_PWR_PGA_CAP_EN, NAU7802_PGA_PWR);
//result &= myScale.setRegister(NAU7802_OTP_B1, 0x30);
//result &= myScale.setRegister(NAU7802_PGA, NAU7802_PGA_OUT_EN | NAU7802_PGA_CHP_DIS);
result &= myScale.calibrateAFE(); //Re-cal analog front end when we change gain, sample rate, or channel
@ -47,7 +42,7 @@ bool SetupScales(byte dbg_level)
if (debug_level > 0) {
gCatena.SafePrintf("SetupScales start\n");
}
// pinMode(interruptPin, INPUT);
// pinMode(interruptPin, INPUT);
if (!myScale.begin(Wire, false))
{
@ -78,7 +73,7 @@ long ReadScale(char channel)
} else {
channelNumber = NAU7802_CHANNEL_2;
}
long startTime = millis();
unsigned long startTime = millis();
myScale.setChannel(channelNumber);
bool calibrate_success = myScale.calibrateAFE();
if (! calibrate_success) {
@ -93,34 +88,37 @@ long ReadScale(char channel)
int const num_scale_readings = SAMPLES; // number of instantaneous scale readings to calculate the median
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
long readings[num_scale_readings]; // create arry to hold readings
long readings[num_scale_readings]; // create array to hold readings
for (int i = 0; i < num_scale_readings; i++) {
//while (digitalRead(interruptPin) == LOW) {
long mytimer = millis();
while (! myScale.available()) {
unsigned long mytimer = millis();
int timeouts = 0;
while (! myScale.available() && (timeouts < 3)) {
// we set a timeout of 10 seconds for the measurement...
if ((millis() - mytimer) > 10000) {
timeouts = timeouts + 1;
// Timeout reading scale...
Wire.endTransmission(true);
delay(50);
InitializeScales();
if (debug_level > 0) {
gCatena.SafePrintf("Timeout while reading scale...\n");
}
break;
}
delay(1);
delay(50);
}
long reading;
if (myScale.available()) {
reading = myScale.getReading();
readings[i] = reading;
reading = myScale.getReading();
readings[i] = reading;
}
if (debug_level > 0) {
gCatena.SafePrintf("Reading: %d\n", reading);
}
delay(10);
delay(50);
}
long duration = millis() - startTime;
unsigned long duration = millis() - startTime;
res = median(readings, num_scale_readings); // calculate median
if (debug_level > 0) {