Compare commits

..

No commits in common. "master" and "20200207" have entirely different histories.

6 changed files with 266 additions and 757 deletions

View File

@ -3,73 +3,3 @@
Code fuer den LoraWAN Node Code fuer den LoraWAN Node
Autor: Joerg Lehmann, nbit Informatik GmbH Autor: Joerg Lehmann, nbit Informatik GmbH
| Parameter | Value |
| ----------------- | --------------------------- |
| Board | MCCI Catena 4610 |
| LoraWAN Subband | "Default, works everywhere" |
| Serial interface | Generic Serial |
| LoraWAN Network | Swisscom |
| System Clock | 24 MHz |
| LoraWAN Region | Europe 868 MHz |
| Optimize | Smallest (-Os default) |
Das sind die verwendeten Libraries [1]:
| URL | Commit | Commit Date |
| --- | ----- | ----------- |
| https://github.com/mcci-catena/Adafruit_BME280_Library.git | 3dafbe1 | Wed, 13 Dec 2017 13:56:30 -0500 |
| https://github.com/mcci-catena/Adafruit_Sensor.git | f2af6f4 | Tue, 1 Sep 2015 15:57:59 +0200 |
| https://github.com/mcci-catena/arduino-lmic.git | 9191f0c | Tue, 30 Jun 2020 09:56:19 -0400 |
| https://github.com/mcci-catena/arduino-lorawan.git | 4bc0d48 | Sat, 9 May 2020 12:38:28 -0400 |
| https://github.com/mcci-catena/Catena-Arduino-Platform.git | 7620a89 | Fri, 31 Jul 2020 14:14:30 -0400 |
| https://github.com/mcci-catena/Catena-mcciadk.git | a428006 | Sat, 21 Dec 2019 20:45:26 -0500 |
| https://github.com/mcci-catena/MCCI_FRAM_I2C.git | f0a5ea5 | Sat, 21 Dec 2019 16:17:01 -0500 |
| https://github.com/tatobari/Q2-HX711-Arduino-Library.git | ccda8d8 | Wed, 13 Mar 2019 12:41:44 -0300 |
| https://github.com/sparkfun/SparkFun_Qwiic_Scale_NAU7802_Arduino_Library.git | 688f255 | Fri, 3 Jan 2020 12:35:22 -0700 |
| https://github.com/mcci-catena/OneWire.git | d814a7b | Thu, 26 Apr 2018 03:45:27 +0800 |
| https://github.com/mcci-catena/SHT1x.git | be7042c | Tue, 20 Sep 2011 13:56:23 +1000 |
Patch arduino-lmic, so initial SF12 is used initially:
`
[joerg@cinnamon src]$ git diff
diff --git a/src/lmic/lmic_bandplan_eu868.h b/src/lmic/lmic_bandplan_eu868.h
index efff7d5..74efb37 100644
--- a/src/lmic/lmic_bandplan_eu868.h
+++ b/src/lmic/lmic_bandplan_eu868.h
@@ -61,7 +61,7 @@ LMICeu868_isValidBeacon1(const uint8_t *d) {
#undef LMICbandplan_isFSK
#define LMICbandplan_isFSK() (/* RX datarate */LMIC.dndr == EU868_DR_FSK)
-#define LMICbandplan_getInitialDrJoin() (EU868_DR_SF7)
+#define LMICbandplan_getInitialDrJoin() (EU868_DR_SF12)
void LMICeu868_setBcnRxParams(void);
#define LMICbandplan_setBcnRxParams() LMICeu868_setBcnRxParams()
`
`[1]:
[joerg@cinnamon libraries]$ for i in Adafruit_BME280_Library Adafruit_Sensor arduino-lmic arduino-lorawan Catena-Arduino-Platform Catena-mcciadk MCCI_FRAM_I2C Q2-HX711-Arduino-Library SparkFun_Qwiic_Scale_NAU7802_Arduino_Library OneWire SHT1x ; do cd $i; echo "| $(git remote -v |grep fetch |awk '{print $2}' |tr '\n' ' ') | $(git log --pretty=format:'%h | %cD ' -n 1) |" ; cd ..; done`
## Some Facts about RSSI and SNR
https://lora.readthedocs.io/en/latest/#rssi
RSSI minimum = -120 dBm.
RSSI < -90 dBm: this signal is extremely weak, at the edge of what a receiver can receive.
RSSI -67dBm: this is a fairly strong signal.
RSSI > -55dBm: this is a very strong signal.
RSSI > -30dBm: your sniffer is sitting right next to the transmitter.
https://lora.readthedocs.io/en/latest/#snr
Typical LoRa SNR values are between: -20dB and +10dB
A value closer to +10dB means the received signal is less corrupted.
LoRa can demodulate signals which are -7.5 dB to -20 dB below the noise floor.

View File

@ -1,78 +0,0 @@
#ifndef _HELPER_H_
#define _HELPER_H
#pragma once
#ifndef _CATENA_H_
#include <Catena.h>
#endif
using namespace McciCatena;
// the primary object
Catena gCatena;
//Following functions are based on "https://github.com/dndubins/QuickStats", by David Dubins
void bubbleSort(long A[], int len) {
unsigned long newn;
unsigned long n = len;
long temp = 0;
do {
newn = 1;
for (int p = 1; p < len; p++) {
if (A[p - 1] > A[p]) {
temp = A[p]; //swap places in array
A[p] = A[p - 1];
A[p - 1] = temp;
newn = p;
} //end if
} //end for
n = newn;
} while (n > 1);
}
long median(long samples[], int m) //calculate the median
{
//First bubble sort the values: https://en.wikipedia.org/wiki/Bubble_sort
long sorted[m]; // Define and initialize sorted array.
long temp = 0; // Temporary float for swapping elements
for (int i = 0; i < m; i++) {
sorted[i] = samples[i];
}
bubbleSort(sorted, m); // Sort the values
if (bitRead(m, 0) == 1) { //If the last bit of a number is 1, it's odd. This is equivalent to "TRUE". Also use if m%2!=0.
return sorted[m / 2]; //If the number of data points is odd, return middle number.
} else {
return (sorted[(m / 2) - 1] + sorted[m / 2]) / 2; //If the number of data points is even, return avg of the middle two numbers.
}
}
// Joergs STDDEV
float stddev(long samples[], int m) //calculate the stdandard deviation
{
float sum_x;
float sum_x2;
float mean;
float stdev;
sum_x = 0;
sum_x2 = 0;
for (int i = 0; i < m; i++) {
sum_x = sum_x + samples[i];
}
mean = sum_x / m;
for (int i = 0; i < m; i++) {
sum_x2 = sum_x2 + ((samples[i] - mean) * (samples[i] - mean));
}
stdev = sqrt(sum_x2 / m);
return stdev;
}
#endif

View File

@ -8,9 +8,6 @@
*/ */
// HX711: 0 => compile for hx711, 1 => compile for NAU7802
#define HX711 0
#include <Catena.h> #include <Catena.h>
#include <Catena_Led.h> #include <Catena_Led.h>
@ -28,18 +25,9 @@
#include <cmath> #include <cmath>
#include <type_traits> #include <type_traits>
#include <HX711.h>
#include "mini_beieli_node.h" #include "mini_beieli_node.h"
#if (HX711)
#include "mini_beieli_node_hx711.h"
#else
#include "mini_beieli_node_nau7802.h"
#endif
#ifndef _HELPER_H_
#include "helper.h"
#endif
using namespace McciCatena; using namespace McciCatena;
// forwards // forwards
@ -60,7 +48,6 @@ cCommandStream::CommandFn cmdGetScaleA;
cCommandStream::CommandFn cmdGetScaleB; cCommandStream::CommandFn cmdGetScaleB;
cCommandStream::CommandFn cmdCalibrateZeroScaleA; cCommandStream::CommandFn cmdCalibrateZeroScaleA;
cCommandStream::CommandFn cmdCalibrateZeroScaleB; cCommandStream::CommandFn cmdCalibrateZeroScaleB;
cCommandStream::CommandFn cmdCalibrateScales;
cCommandStream::CommandFn cmdCalibrateScaleA; cCommandStream::CommandFn cmdCalibrateScaleA;
cCommandStream::CommandFn cmdCalibrateScaleB; cCommandStream::CommandFn cmdCalibrateScaleB;
cCommandStream::CommandFn cmdSetDebugLevel; cCommandStream::CommandFn cmdSetDebugLevel;
@ -73,7 +60,6 @@ static const cCommandStream::cEntry sMyExtraCommmands[] =
{ "hello", cmdHello }, { "hello", cmdHello },
{ "get_calibration_settings", cmdGetCalibrationSettings }, { "get_calibration_settings", cmdGetCalibrationSettings },
{ "get_sensor_readings", cmdGetSensorReadings }, { "get_sensor_readings", cmdGetSensorReadings },
{ "calibrate_scales", cmdCalibrateScales },
{ "calibrate_zero_scale_a", cmdCalibrateZeroScaleA }, { "calibrate_zero_scale_a", cmdCalibrateZeroScaleA },
{ "calibrate_zero_scale_b", cmdCalibrateZeroScaleB }, { "calibrate_zero_scale_b", cmdCalibrateZeroScaleB },
{ "calibrate_scale_a", cmdCalibrateScaleA }, { "calibrate_scale_a", cmdCalibrateScaleA },
@ -101,7 +87,7 @@ sMyExtraCommands_top(
\****************************************************************************/ \****************************************************************************/
byte my_position = 0; // what is our actual measurement, starts with 0 byte my_position = 0; // what is our actual measurement, starts with 0
unsigned long timer_pos0; long timer_pos0;
// Global Variables // Global Variables
LORA_data lora_data; LORA_data lora_data;
@ -112,13 +98,16 @@ long iteration = 0; // what iteration number do we have, starts with 0
long package_counter = 0; // sent package counter long package_counter = 0; // sent package counter
bool send_in_progress = false; bool send_in_progress = false;
bool stop_iterations = false; bool stop_iterations = false;
bool start_new_iteration = false;
bool next_package_is_init_package = true; bool next_package_is_init_package = true;
uint32_t gRebootMs; uint32_t gRebootMs;
// generic timer // generic timer
long t_cur; long t_cur;
// the primary object
Catena gCatena;
//
// the LoRaWAN backhaul. Note that we use the // the LoRaWAN backhaul. Note that we use the
// Catena version so it can provide hardware-specific // Catena version so it can provide hardware-specific
// information to the base class. // information to the base class.
@ -142,10 +131,15 @@ SPIClass gSPI2(
Catena_Mx25v8035f gFlash; Catena_Mx25v8035f gFlash;
bool fFlash; bool fFlash;
// Scales
HX711 LoadCell;
// USB power // USB power
bool fUsbPower; bool fUsbPower;
// have we printed the sleep info? // have we printed the sleep info?
bool g_fPrintedSleeping = false;
// the job that's used to synchronize us with the LMIC code // the job that's used to synchronize us with the LMIC code
static osjob_t iterationJob; static osjob_t iterationJob;
static osjob_t sendJob; static osjob_t sendJob;
@ -154,10 +148,13 @@ void setup(void)
{ {
gCatena.begin(); gCatena.begin();
// Use D10 to regulate power
pinMode(D10, OUTPUT);
setup_platform(); setup_platform();
SetupScales(config_data.debug_level); ClearLoraData();
ClearLoraData(true);
setup_bme280(); setup_bme280();
//setup_scales();
setup_flash(); setup_flash();
setup_uplink(); setup_uplink();
@ -166,7 +163,7 @@ void setup(void)
void setup_platform(void) void setup_platform(void)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Setup_platform\n"); gCatena.SafePrintf("%010d - setup_platform\n", millis());
} }
/* add our application-specific commands */ /* add our application-specific commands */
@ -177,12 +174,12 @@ void setup_platform(void)
// read config_data from fram... // read config_data from fram...
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Reading Calibration Config from FRAM...\n"); gCatena.SafePrintf("%010d - Reading Calibration Config from FRAM...\n", millis());
} }
gCatena.getFram()->getField(cFramStorage::kAppConf, (uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->getField(cFramStorage::kBme680Cal, (uint8_t *)&config_data, sizeof(config_data));
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Setup_platform, this is the configuration\n"); gCatena.SafePrintf("%010d - setup_platform, this is the configuration\n", millis());
gCatena.SafePrintf("cal_w1_0: %d\n", config_data.cal_w1_0); gCatena.SafePrintf("cal_w1_0: %d\n", config_data.cal_w1_0);
gCatena.SafePrintf("cal_w2_0: %d\n", config_data.cal_w2_0); gCatena.SafePrintf("cal_w2_0: %d\n", config_data.cal_w2_0);
gCatena.SafePrintf("cal_w1_factor: %d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000); gCatena.SafePrintf("cal_w1_factor: %d.%03d\n", (int)config_data.cal_w1_factor, (int)abs(config_data.cal_w1_factor * 1000) % 1000);
@ -281,7 +278,7 @@ void setup_platform(void)
void setup_bme280(void) void setup_bme280(void)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Setup_bme280\n"); gCatena.SafePrintf("%010d - setup_bme280\n", millis());
} }
if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep)) { if (gBME280.begin(BME280_ADDRESS, Adafruit_BME280::OPERATING_MODE::Sleep)) {
@ -296,17 +293,30 @@ void setup_bme280(void)
bool setup_scales(void) bool setup_scales(void)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Setup_scales\n"); gCatena.SafePrintf("%010d - setup_scales\n", millis());
} }
bool res; bool res;
res = true; res = true;
// Enable Power // Enable Power
PowerupScale(); digitalWrite(D10, HIGH);
// Initialize library with data output pin, clock input pin and gain factor.
// Channel selection is made by passing the appropriate gain:
// - With a gain factor of 64 or 128, channel A is selected
// - With a gain factor of 32, channel B is selected
// By omitting the gain factor parameter, the library
// default "128" (Channel A) is used here.
LoadCell.begin(A1, A0, 32);
if (!(LoadCell.wait_ready_timeout(2000))) {
gCatena.SafePrintf("%010d - Scale not ready after Init.\n");
res = false;
}
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Setup_scale done\n"); gCatena.SafePrintf("%010d - setup_scale done\n", millis());
} }
return res; return res;
@ -315,14 +325,14 @@ bool setup_scales(void)
void setup_flash(void) void setup_flash(void)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("setup_flash\n"); gCatena.SafePrintf("%010d - setup_flash\n", millis());
} }
if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS)) { if (gFlash.begin(&gSPI2, Catena::PIN_SPI2_FLASH_SS)) {
fFlash = true; fFlash = true;
gFlash.powerDown(); gFlash.powerDown();
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("FLASH found, but power down\n"); gCatena.SafePrintf("%010d - FLASH found, but power down\n", millis());
} }
} }
else { else {
@ -330,7 +340,7 @@ void setup_flash(void)
gFlash.end(); gFlash.end();
gSPI2.end(); gSPI2.end();
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("FLASH found: check hardware\n"); gCatena.SafePrintf("%010d - No FLASH found: check hardware\n", millis());
} }
} }
} }
@ -338,28 +348,25 @@ void setup_flash(void)
void setup_uplink(void) void setup_uplink(void)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("setup_uplink\n"); gCatena.SafePrintf("%010d - setup_uplink\n", millis());
} }
LMIC_setClockError(1*65536/100); LMIC_setClockError(1*65536/100);
// explicitly enable LinkCheckMode
gLoRaWAN.SetLinkCheckMode(true);
/* figure out when to reboot */ /* figure out when to reboot */
gRebootMs = (CATCFG_T_REBOOT + os_getRndU2() - 32768) * 1000; gRebootMs = (CATCFG_T_REBOOT + os_getRndU2() - 32768) * 1000;
// Do an unjoin, so every reboot will trigger a join // Do an unjoin, so every reboot will trigger a join
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("do an unjoin...\n"); gCatena.SafePrintf("%010d - do an unjoin...\n", millis());
} }
LMIC_unjoin(); LMIC_unjoin();
/* trigger a join by sending the first packet */ /* trigger a join by sending the first packet */
if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest))) { if (!(gCatena.GetOperatingFlags() & static_cast<uint32_t>(gCatena.OPERATING_FLAGS::fManufacturingTest))) {
if (!gLoRaWAN.IsProvisioned()) if (!gLoRaWAN.IsProvisioned())
gCatena.SafePrintf("LoRaWAN not provisioned yet. Use the commands to set it up.\n"); gCatena.SafePrintf("%010d - LoRaWAN not provisioned yet. Use the commands to set it up.\n");
else { else {
if (config_data.debug_level > 1) { if (config_data.debug_level > 1) {
gLed.Set(LedPattern::Joining); gLed.Set(LedPattern::Joining);
@ -377,12 +384,9 @@ void setup_uplink(void)
void loop() void loop()
{ {
gCatena.poll(); gCatena.poll();
if (start_new_iteration) {
StartNewIteration();
}
} }
void ClearLoraData(bool clearLastValues) void ClearLoraData(void)
{ {
lora_data.version = LORA_DATA_VERSION; lora_data.version = LORA_DATA_VERSION;
lora_data.vbat = 0; lora_data.vbat = 0;
@ -412,7 +416,6 @@ void ClearLoraData(bool clearLastValues)
my_position = 0; my_position = 0;
// We initialize last_sensor_reading // We initialize last_sensor_reading
if (clearLastValues) {
last_sensor_reading.vbat = 0; last_sensor_reading.vbat = 0;
last_sensor_reading.weight1 = 0; last_sensor_reading.weight1 = 0;
last_sensor_reading.weight2 = 0; last_sensor_reading.weight2 = 0;
@ -421,11 +424,10 @@ void ClearLoraData(bool clearLastValues)
last_sensor_reading.humidity = 0; last_sensor_reading.humidity = 0;
last_sensor_reading.pressure = 0; last_sensor_reading.pressure = 0;
} }
}
void ShowLORAData(bool firstTime) void ShowLORAData(bool firstTime)
{ {
gCatena.SafePrintf("ShowLORAData\n"); gCatena.SafePrintf("%010d - ShowLORAData\n", millis());
if (firstTime) { if (firstTime) {
@ -506,7 +508,7 @@ uint8_t GetVBatValue(int millivolts)
void DoDeepSleep(uint32_t sleep_time) void DoDeepSleep(uint32_t sleep_time)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("DoDeepSleep, now going to deep sleep, millis: %d\n", millis()); gCatena.SafePrintf("%010d - now going to deep sleep\n", millis());
} }
// Prepare Deep Sleep // Prepare Deep Sleep
@ -514,104 +516,155 @@ void DoDeepSleep(uint32_t sleep_time)
gLed.Set(LedPattern::Off); gLed.Set(LedPattern::Off);
} }
deepSleepPrepare(); Serial.end();
Wire.end();
SPI.end();
if (fFlash)
gSPI2.end();
// Now sleeping... // Now sleeping...
gCatena.Sleep(sleep_time); gCatena.Sleep(sleep_time);
// Recover from wakeup... // Recover from wakeup...
deepSleepRecovery(); Serial.begin();
Wire.begin();
SPI.begin();
if (fFlash)
gSPI2.begin();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - done with deep sleep\n", millis());
}
}
//Following functions are based on "https://github.com/dndubins/QuickStats", by David Dubins
long median(long samples[], int m) //calculate the median
{
//First bubble sort the values: https://en.wikipedia.org/wiki/Bubble_sort
long sorted[m]; // Define and initialize sorted array.
long temp = 0; // Temporary float for swapping elements
for (int i = 0; i < m; i++) {
sorted[i] = samples[i];
}
bubbleSort(sorted, m); // Sort the values
if (bitRead(m, 0) == 1) { //If the last bit of a number is 1, it's odd. This is equivalent to "TRUE". Also use if m%2!=0.
return sorted[m / 2]; //If the number of data points is odd, return middle number.
} else {
return (sorted[(m / 2) - 1] + sorted[m / 2]) / 2; //If the number of data points is even, return avg of the middle two numbers.
}
}
void bubbleSort(long A[], int len) {
unsigned long newn;
unsigned long n = len;
long temp = 0;
do {
newn = 1;
for (int p = 1; p < len; p++) {
if (A[p - 1] > A[p]) {
temp = A[p]; //swap places in array
A[p] = A[p - 1];
A[p - 1] = temp;
newn = p;
} //end if
} //end for
n = newn;
} while (n > 1);
}
long my_read_average(byte gain, byte times) {
long res;
int const num_scale_readings = 25; // number of instantaneous scale readings to calculate the median
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
long readings[num_scale_readings]; // create arry to hold readings
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("done with deep sleep, millis: %d\n", millis()); gCatena.SafePrintf("%010d - my_read_average, measurements: ", millis());
}
} }
// Returns true if measurements are plausible, otherwise false LoadCell.set_gain(gain);
bool ReadSensors(SENSOR_data &sensor_data) { // we wait 400ms (settling time according HX711 datasheet @ 10 SPS
bool plausible; delay(400);
bool plausible_a;
bool plausible_b; for (int i = 0; i < num_scale_readings; i++) {
readings[i] = LoadCell.read(); // fill the array with instantaneous readings from the scale
}
res = median(readings, num_scale_readings); // calculate median
if (config_data.debug_level > 0) {
gCatena.SafePrintf("; median of %d samples: %d\n", num_scale_readings, res);
}
return res;
}
void ReadSensors(SENSOR_data &sensor_data) {
SENSOR_data res; SENSOR_data res;
int32_t weight_current32; int32_t weight_current32;
int32_t weight_current32_a;
int32_t weight_current32_b;
long w1_0_real;
long w2_0_real;
// vBat // vBat
gCatena.poll();
int vbat_mv = (int)(gCatena.ReadVbat() * 1000.0f); int vbat_mv = (int)(gCatena.ReadVbat() * 1000.0f);
res.vbat = GetVBatValue(vbat_mv); res.vbat = GetVBatValue(vbat_mv);
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("vBat: %d mV\n", vbat_mv); gCatena.SafePrintf("%010d - vBat: %d mV\n", millis(), vbat_mv);
} }
// Read Scales // Read Scales
w1_0_real = config_data.cal_w1_0;
w2_0_real = config_data.cal_w2_0;
if (setup_scales()) { if (setup_scales()) {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("LoadCell is ready.\n"); gCatena.SafePrintf("%010d - HX711 LoadCell is ready.\n", millis());
} }
res.weight1 = (int32_t)ReadScale('A'); gCatena.poll();
res.weight1 = (int32_t)my_read_average(32, 7);
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 1 weight1_current: %ld\n", res.weight1); gCatena.SafePrintf("%010d - Load_cell 1 weight1_current: %ld\n", millis(), res.weight1);
} }
res.weight2 = (int32_t)ReadScale('B'); gCatena.poll();
res.weight2 = (int32_t)my_read_average(128, 7);
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("Load_cell 2 weight2_current: %ld\n", res.weight2); gCatena.SafePrintf("%010d - Load_cell 2 weight2_current: %ld\n", millis(), res.weight2);
} }
} }
else { else {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("LoadCell not ready.\n"); gCatena.SafePrintf("%010d - HX711 LoadCell not ready.\n", millis());
} }
} }
// Disable Power // Disable Power
PowerdownScale(); gCatena.poll();
digitalWrite(D10, LOW);
// Gewicht berechnen // Gewicht berechnen
weight_current32_a = (int32_t)((res.weight1 - w1_0_real) / config_data.cal_w1_factor); weight_current32 = (int32_t)((((res.weight1 - config_data.cal_w1_0) / config_data.cal_w1_factor) + ((res.weight2 - config_data.cal_w2_0) / config_data.cal_w2_factor)) / 5.0);
weight_current32_b = (int32_t)((res.weight2 - w2_0_real) / config_data.cal_w2_factor);
weight_current32 = (int32_t)((weight_current32_a + weight_current32_b) / 5.0);
// we check if weights are plausible
plausible_a = (weight_current32_a > -10000) && (weight_current32_a < 150000);
plausible_b = (weight_current32_b > -10000) && (weight_current32_b < 150000);
plausible = (plausible_a && plausible_b);
if (weight_current32 < 0) { if (weight_current32 < 0) {
if (plausible) {
weight_current32 = 0; weight_current32 = 0;
}
} else if (weight_current32 > UINT16_MAX) { } else if (weight_current32 > UINT16_MAX) {
//weight_current32 = UINT16_MAX; //weight_current32 = UINT16_MAX;
// we set the weight to 0, as such high values are not realistic and probably a sign for bad calibration... // we set the weight to 0, as such high values are not realistic and probably a sign for bad calibration...
weight_current32 = 0; weight_current32 = 0;
} }
if (!plausible) {
weight_current32 = NOT_PLAUSIBLE_16;
if (!plausible_a) {
res.weight1 = NOT_PLAUSIBLE_32;
}
if (!plausible_b) {
res.weight2 = NOT_PLAUSIBLE_32;
}
}
res.weight = (uint16_t)weight_current32; res.weight = (uint16_t)weight_current32;
if (fBme) { if (fBme) {
gCatena.poll();
/* warm up the BME280 by discarding a measurement */ /* warm up the BME280 by discarding a measurement */
(void)gBME280.readTemperature(); (void)gBME280.readTemperature();
gCatena.poll();
Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity(); Adafruit_BME280::Measurements m = gBME280.readTemperaturePressureHumidity();
// temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C // temperature is 2 bytes from -0x80.00 to +0x7F.FF degrees C
// pressure is 2 bytes, hPa * 10. // pressure is 2 bytes, hPa * 10.
// humidity is one byte, where 0 == 0/256 and 0xFF == 255/256. // humidity is one byte, where 0 == 0/256 and 0xFF == 255/256.
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf( gCatena.SafePrintf(
"BME280: T: %d P: %d RH: %d\n", "%010d - BME280: T: %d P: %d RH: %d\n",
millis(),
(int)m.Temperature, (int)m.Temperature,
(int)m.Pressure, (int)m.Pressure,
(int)m.Humidity); (int)m.Humidity);
@ -620,16 +673,14 @@ bool ReadSensors(SENSOR_data &sensor_data) {
res.humidity = (uint8_t)m.Humidity; res.humidity = (uint8_t)m.Humidity;
res.pressure = (uint8_t)((m.Pressure / 100) - PRESSURE_OFFSET); res.pressure = (uint8_t)((m.Pressure / 100) - PRESSURE_OFFSET);
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("pressure_current: %d\n", res.pressure); gCatena.SafePrintf("%010d - pressure_current: %d\n", millis(), res.pressure);
} }
} }
sensor_data = res; sensor_data = res;
return plausible;
} }
void StartNewIteration() { void StartNewIteration() {
start_new_iteration = false;
uint32_t wait_time; uint32_t wait_time;
wait_time = 0; wait_time = 0;
@ -637,24 +688,13 @@ void StartNewIteration() {
iteration++; iteration++;
SENSOR_data current_sensor_reading; SENSOR_data current_sensor_reading;
if (!ReadSensors(current_sensor_reading)) { ReadSensors(current_sensor_reading);
// we try a second time if Readings do not seem plausible
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Readings do not seem plausible, try a second time\n");
}
delay(500);
if (!ReadSensors(current_sensor_reading)) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Readings do not seem plausible for a second time, we give up!\n");
}
}
}
int16_t temp_change; int16_t temp_change;
// vBus // vBus
float vBus = gCatena.ReadVbus(); float vBus = gCatena.ReadVbus();
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("vBus: %d mV\n", (int)(vBus * 1000.0f)); gCatena.SafePrintf("%010d - vBus: %d mV\n", millis(), (int)(vBus * 1000.0f));
} }
fUsbPower = (vBus > 4.3) ? true : false; fUsbPower = (vBus > 4.3) ? true : false;
@ -697,59 +737,38 @@ void StartNewIteration() {
// we send data the first time the system is started, when the array is full // we send data the first time the system is started, when the array is full
// or when the weight has fallen more than threshold or the first measurement is // or when the weight has fallen more than threshold or the first measurement is
// more than one hour old (which should not happen :-) ) // more than one hour old (which should not happen :-) )
bool big_difference = (abs(last_sensor_reading.weight - current_sensor_reading.weight) > SEND_DIFF_THRESHOLD_5GRAMS); if ( (next_package_is_init_package) || (my_position >= MAX_VALUES_TO_SEND) || ((last_sensor_reading.weight - current_sensor_reading.weight) > SEND_DIFF_THRESHOLD_5GRAMS) || ((millis() - timer_pos0) > 3600000)) {
if ( (next_package_is_init_package) || (my_position >= MAX_VALUES_TO_SEND) || (big_difference) || ((millis() - timer_pos0) > 3600000)) {
lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60); lora_data.offset_last_reading = (uint8_t)((millis() - timer_pos0) / 1000 / 60);
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("startSendingUplink(), my_position: %d, iteration: %d, package_counter: %d, big_difference: %d\n", my_position, iteration, package_counter, big_difference); gCatena.SafePrintf("%010d - startSendingUplink(), my_position: %d, iteration: %d, package_counter: %d\n", millis(), my_position, iteration, package_counter);
} }
// the first <INIT_PACKETS> packets are "Init-Packets" or each INIT_PACKAGE_INTERVAL ... // the first 12 packets are "Init-Packets" or each INIT_PACKAGE_INTERVAL ...
// send confirmed if big_difference in weight startSendingUplink(next_package_is_init_package);
startSendingUplink(next_package_is_init_package, big_difference); next_package_is_init_package = ((iteration < 12) || ((package_counter % INIT_PACKAGE_INTERVAL) == 0));
next_package_is_init_package = ((iteration < INIT_PACKETS) || ((package_counter % INIT_PACKAGE_INTERVAL) == 0));
if (config_data.debug_level > 1) { if (config_data.debug_level > 1) {
gLed.Set(LedPattern::TwoShort); gLed.Set(LedPattern::TwoShort);
} }
// Loop sending is in progress, timeout just in case after 600 seconds // Loop while sending is in progress, timeout just in case after 300 seconds
unsigned long start_time = millis(); long start_time = millis();
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("waiting while send is in progress\n"); gCatena.SafePrintf("%010d - waiting while send is in progress\n", millis());
} }
while (send_in_progress && ((millis() - start_time) < 600000)) while (send_in_progress && ((millis() - start_time) < 300000))
{ {
gCatena.poll(); gCatena.poll();
yield(); yield();
} }
// handle timeout...
if (send_in_progress) {
if (config_data.debug_level > 0) {
gCatena.SafePrintf("looks like we timed out waiting for sending to finish...\n", wait_time);
}
LMIC_clrTxData();
// we sleep 10 seconds...
start_time = millis();
while ((millis() - start_time) < 10000)
{
gCatena.poll();
yield();
}
send_in_progress = false;
}
wait_time = (uint32_t)((millis() - start_time) / 1000); wait_time = (uint32_t)((millis() - start_time) / 1000);
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("end waiting, wait time was %d seconds\n", wait_time); gCatena.SafePrintf("%010d - end waiting, wait time was %d seconds\n", millis(), wait_time);
} }
} }
if (not(next_package_is_init_package)) { if (not(next_package_is_init_package)) {
// we make the current sensor reading to the last one... // we make the current sensor reading to the last one...
last_sensor_reading = current_sensor_reading; last_sensor_reading = current_sensor_reading;
} else {
// we only copy the last weight
last_sensor_reading.weight = current_sensor_reading.weight;
} }
uint32_t sleep_time_sec; uint32_t sleep_time_sec;
@ -760,17 +779,17 @@ void StartNewIteration() {
sleep_time_sec = 5; sleep_time_sec = 5;
} }
// for the first <INIT_PACKETS> iterations, we set the sleep time to 120 seconds only... // for the first 12 iterations, we set the sleep time to 10 seconds only...
if (iteration <= INIT_PACKETS) { if (iteration <= 12) {
sleep_time_sec = 120; sleep_time_sec = 10;
} }
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("now going to sleep for %d seconds...\n", sleep_time_sec); gCatena.SafePrintf("%010d - now going to sleep for %d seconds...\n", millis(), sleep_time_sec);
if (fUsbPower) { if (fUsbPower) {
gCatena.SafePrintf("USB Power is on\n"); gCatena.SafePrintf("%010d - USB Power is on\n", millis());
} else { } else {
gCatena.SafePrintf("USB Power is off\n"); gCatena.SafePrintf("%010d - USB Power is off\n", millis());
} }
//Serial.flush(); //Serial.flush();
if (config_data.debug_level > 1) { if (config_data.debug_level > 1) {
@ -778,33 +797,16 @@ void StartNewIteration() {
} }
} }
// if we need to periodically reboot, we can do it now... if (!fUsbPower) {
if (uint32_t(millis()) > gRebootMs) {
// time to reboot
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Reached threshold to reboot...\n");
Serial.flush();
}
NVIC_SystemReset();
}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just before Sleeping: %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
if (!fUsbPower && !stop_iterations) {
DoDeepSleep(sleep_time_sec); DoDeepSleep(sleep_time_sec);
if (! stop_iterations) { os_setTimedCallback(
start_new_iteration = true; &iterationJob,
} os_getTime() + sec2osticks(2),
startNewIterationCb);
} }
else { else {
if (! stop_iterations) {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("light sleep; os_setTimedCallback for startNewIterationCb in %d...seconds\n", sleep_time_sec); gCatena.SafePrintf("%010d - light sleep; os_setTimedCallback for startNewIterationCb in %d...seconds\n", millis(), sleep_time_sec);
} }
os_setTimedCallback( os_setTimedCallback(
&iterationJob, &iterationJob,
@ -812,9 +814,8 @@ void StartNewIteration() {
startNewIterationCb); startNewIterationCb);
} }
} }
}
void startSendingUplink(bool firstTime, bool confirmed) void startSendingUplink(bool firstTime)
{ {
send_in_progress = true; send_in_progress = true;
@ -838,50 +839,21 @@ void startSendingUplink(bool firstTime, bool confirmed)
fConfirmed = true; fConfirmed = true;
} }
// we can overwrite fConfirmed
if (confirmed) {
fConfirmed = true;
}
if (firstTime) { if (firstTime) {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("SendBuffer firstTime\n"); gCatena.SafePrintf("%010d - SendBuffer firstTime\n", millis());
} }
if (gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort)) { gLoRaWAN.SendBuffer((uint8_t*)&lora_data_first, sizeof(LORA_data_first), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
package_counter++; package_counter++;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just after SendBuffer (successful): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
}
else {
gCatena.SafePrintf("LMIC.opmode just before SendBuffer (failed): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
} else { } else {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just before SendBuffer: %#x\n", LMIC.opmode); gCatena.SafePrintf("%010d - SendBuffer not firstTime\n", millis());
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
gCatena.SafePrintf("SendBuffer not firstTime\n");
} }
if (gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort)) { gLoRaWAN.SendBuffer((uint8_t*)&lora_data, sizeof(LORA_data), sendBufferDoneCb, NULL, fConfirmed, kUplinkPort);
package_counter++; package_counter++;
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode just after SendBuffer (successful): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
} else {
gCatena.SafePrintf("LMIC.opmode just before SendBuffer (failed): %#x\n", LMIC.opmode);
gCatena.SafePrintf("LMIC.globalDutyRate: %d, LMIC.globalDutyAvail: %d, os_getTime: %d\n", LMIC.globalDutyRate, LMIC.globalDutyAvail, os_getTime());
gCatena.SafePrintf("LMIC.seqnoUp: %d, LMIC.seqnoDn: %d\n", LMIC.seqnoUp, LMIC.seqnoDn);
}
} }
ClearLoraData(false); ClearLoraData();
} }
static void sendBufferDoneCb( static void sendBufferDoneCb(
@ -892,7 +864,6 @@ static void sendBufferDoneCb(
if (config_data.debug_level > 1) { if (config_data.debug_level > 1) {
gLed.Set(LedPattern::Settling); gLed.Set(LedPattern::Settling);
gCatena.SafePrintf("LMIC.opmode in sendBufferDoneCb: %#x\n", LMIC.opmode);
} }
pFn = settleDoneCb; pFn = settleDoneCb;
@ -907,7 +878,7 @@ static void sendBufferDoneCb(
gLoRaWAN.Shutdown(); gLoRaWAN.Shutdown();
} }
else if (config_data.debug_level > 0) { else if (config_data.debug_level > 0) {
gCatena.SafePrintf("send buffer failed, LMIC.opmode: %#x\n", LMIC.opmode); gCatena.SafePrintf("%010d - send buffer failed\n", millis());
} }
} }
@ -931,92 +902,70 @@ static void txNotProvisionedCb(
} }
} }
bool checkDeepSleep(void)
{
return !fUsbPower;
}
void doSleepAlert(const bool fDeepSleep)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("We wait until is is safe to go to sleep...\n");
}
for (int i = 0; i <= 15; i++) {
unsigned long prevPrint = millis();
while (os_queryTimeCriticalJobs(ms2osticks(2000)) != 0)
{
gCatena.poll();
yield();
if (millis() - prevPrint > 1000) {
prevPrint = millis();
if (config_data.debug_level > 0) {
gCatena.SafePrintf("LMIC.opmode: %#x in loop %d\n", LMIC.opmode, i);
}
}
}
}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("Now it is safe to go to sleep\n");
}
}
static void settleDoneCb( static void settleDoneCb(
osjob_t* pSendJob) osjob_t* pSendJob)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("settleDoneCb - we are at the end of the callback chain!\n"); gCatena.SafePrintf("%010d - settleDoneCb\n", millis());
} }
const bool fDeepSleep = checkDeepSleep(); if (config_data.debug_level > 2) {
// Terry vv
gCatena.SafePrintf("LMIC.rxDelay: %i\n", LMIC.rxDelay);
gCatena.SafePrintf("LMIC.dn2Dr: %i\n", LMIC.dn2Dr);
gCatena.SafePrintf("LMIC.dn2Freq: %i\n", LMIC.dn2Freq);
gCatena.SafePrintf("LMIC.rx1DrOffset: %i\n", LMIC.rx1DrOffset);
gCatena.SafePrintf("LMIC.adrAckReq: %i\n", LMIC.adrAckReq);
gCatena.SafePrintf("LMIC.adrEnabled: %i\n", LMIC.adrEnabled);
// Terry ^^
}
if (uint32_t(millis()) > gRebootMs) if (uint32_t(millis()) > gRebootMs) {
{
// time to reboot // time to reboot
NVIC_SystemReset(); NVIC_SystemReset();
} }
doSleepAlert(fDeepSleep); sleepDoneCb(pSendJob);
}
static void sleepDoneCb(osjob_t* pJob)
{
if (config_data.debug_level > 1) {
gLed.Set(LedPattern::WarmingUp);
}
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - sleepDoneCb\n", millis());
}
os_setTimedCallback(
pJob,
os_getTime() + sec2osticks(CATCFG_T_WARMUP),
warmupDoneCb);
}
static void warmupDoneCb(osjob_t* pJob)
{
if (config_data.debug_level > 0) {
gCatena.SafePrintf("%010d - warmupDoneCb\n", millis());
}
send_in_progress = false; send_in_progress = false;
} }
void deepSleepPrepare(void)
{
Serial.end();
Wire.endTransmission(true);
Wire.end();
SPI.end();
if (fFlash)
gSPI2.end();
}
void deepSleepRecovery(void)
{
Serial.begin();
Wire.begin();
SPI.begin();
if (fFlash)
gSPI2.begin();
}
static void startNewIterationCb(osjob_t* pJob) static void startNewIterationCb(osjob_t* pJob)
{ {
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("startNewIterationCb\n"); gCatena.SafePrintf("%010d - startNewIterationCb\n", millis());
} }
if (! stop_iterations) { if (! stop_iterations) {
start_new_iteration = true; StartNewIteration();
} }
} }
static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage) static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage, size_t nMessage)
{ {
long cal_w1_0; long cal_w1_0;
long cal_w2_0; long cal_w2_0;
float cal_w1_factor; float cal_w1_factor;
@ -1027,8 +976,10 @@ static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage
float fval; float fval;
} u; } u;
SENSOR_data temp_sensor_data;
if (config_data.debug_level > 0) { if (config_data.debug_level > 0) {
gCatena.SafePrintf("receiveMessage was called!!!\n"); gCatena.SafePrintf("%010d - receiveMessage was called!!!\n", millis());
} }
if (config_data.debug_level > 2) { if (config_data.debug_level > 2) {
@ -1106,7 +1057,7 @@ static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage
config_data.cal_w1_0 = cal_w1_0; config_data.cal_w1_0 = cal_w1_0;
config_data.cal_w2_0 = cal_w2_0; config_data.cal_w2_0 = cal_w2_0;
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
lora_data_first.cal_w1_0 = config_data.cal_w1_0; lora_data_first.cal_w1_0 = config_data.cal_w1_0;
lora_data_first.cal_w2_0 = config_data.cal_w2_0; lora_data_first.cal_w2_0 = config_data.cal_w2_0;
} }
@ -1122,7 +1073,7 @@ static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage
config_data.cal_w2_0 = cal_w2_0; config_data.cal_w2_0 = cal_w2_0;
config_data.cal_w1_factor = cal_w1_factor; config_data.cal_w1_factor = cal_w1_factor;
config_data.cal_w2_factor = cal_w2_factor; config_data.cal_w2_factor = cal_w2_factor;
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
lora_data_first.cal_w1_0 = config_data.cal_w1_0; lora_data_first.cal_w1_0 = config_data.cal_w1_0;
lora_data_first.cal_w2_0 = config_data.cal_w2_0; lora_data_first.cal_w2_0 = config_data.cal_w2_0;
@ -1130,7 +1081,6 @@ static void receiveMessage(void *pContext, uint8_t port, const uint8_t *pMessage
lora_data_first.cal_w2_factor = config_data.cal_w2_factor; lora_data_first.cal_w2_factor = config_data.cal_w2_factor;
} }
} }
} }
/* process "application hello" -- args are ignored */ /* process "application hello" -- args are ignored */
@ -1143,6 +1093,7 @@ cCommandStream::CommandStatus cmdHello(cCommandStream * pThis, void *pContext, i
return cCommandStream::CommandStatus::kSuccess; return cCommandStream::CommandStatus::kSuccess;
} }
cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream *pThis, void *pContext, int argc, char **argv) cCommandStream::CommandStatus cmdGetCalibrationSettings(cCommandStream *pThis, void *pContext, int argc, char **argv)
{ {
pThis->printf("{\n"); pThis->printf("{\n");
@ -1190,8 +1141,8 @@ cCommandStream::CommandStatus cmdGetScale2(cCommandStream * pThis, void *pContex
cCommandStream::CommandStatus cmdCalibrateZeroScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv) cCommandStream::CommandStatus cmdCalibrateZeroScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv)
{ {
setup_scales(); setup_scales();
config_data.cal_w1_0 = (int32_t)ReadScale('A'); config_data.cal_w1_0 = (int32_t)my_read_average(32, 10);
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_zero_scale_a was successful\" }\n"); pThis->printf("{ \"msg\": \"calibrate_zero_scale_a was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess; return cCommandStream::CommandStatus::kSuccess;
@ -1200,42 +1151,22 @@ cCommandStream::CommandStatus cmdCalibrateZeroScaleA(cCommandStream * pThis, voi
cCommandStream::CommandStatus cmdCalibrateZeroScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv) cCommandStream::CommandStatus cmdCalibrateZeroScaleB(cCommandStream *pThis, void *pContext, int argc, char **argv)
{ {
setup_scales(); setup_scales();
config_data.cal_w2_0 = (int32_t)ReadScale('B'); config_data.cal_w2_0 = (int32_t)my_read_average(128, 10);
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_zero_scale_b was successful\" }\n"); pThis->printf("{ \"msg\": \"calibrate_zero_scale_b was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess; return cCommandStream::CommandStatus::kSuccess;
} }
cCommandStream::CommandStatus cmdCalibrateScales(cCommandStream * pThis, void *pContext, int argc, char **argv)
{
String s_cal_w1_0(argv[1]);
String s_cal_w1_factor(argv[2]);
String s_cal_w2_0(argv[3]);
String s_cal_w2_factor(argv[4]);
config_data.cal_w1_0 = s_cal_w1_0.toInt();
config_data.cal_w1_factor = s_cal_w1_factor.toFloat();
config_data.cal_w2_0 = s_cal_w2_0.toInt();
config_data.cal_w2_factor = s_cal_w2_factor.toFloat();
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_scales was successful\" }\n");
return cCommandStream::CommandStatus::kSuccess;
}
cCommandStream::CommandStatus cmdCalibrateScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv) cCommandStream::CommandStatus cmdCalibrateScaleA(cCommandStream *pThis, void *pContext, int argc, char **argv)
{ {
String w1_gramm(argv[1]); String w1_gramm(argv[1]);
long weight1; long weight1;
setup_scales(); setup_scales();
weight1 = ReadScale('A'); weight1 = my_read_average(32, 10);
config_data.cal_w1_factor = (float)((weight1 - config_data.cal_w1_0) / w1_gramm.toFloat()); config_data.cal_w1_factor = (float)((weight1 - config_data.cal_w1_0) / w1_gramm.toFloat());
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_scale_a was successful\" }\n"); pThis->printf("{ \"msg\": \"calibrate_scale_a was successful\" }\n");
@ -1246,12 +1177,11 @@ cCommandStream::CommandStatus cmdCalibrateScaleB(cCommandStream * pThis, void *p
{ {
String w2_gramm(argv[1]); String w2_gramm(argv[1]);
long weight2; long weight2;
setup_scales(); setup_scales();
weight2 = ReadScale('B'); weight2 = my_read_average(128, 10);
config_data.cal_w2_factor = (float)((weight2 - config_data.cal_w2_0) / w2_gramm.toFloat()); config_data.cal_w2_factor = (float)((weight2 - config_data.cal_w2_0) / w2_gramm.toFloat());
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"calibrate_scale_b was successful\" }\n"); pThis->printf("{ \"msg\": \"calibrate_scale_b was successful\" }\n");
@ -1262,9 +1192,7 @@ cCommandStream::CommandStatus cmdSetDebugLevel(cCommandStream * pThis, void *pCo
{ {
String s_debug_level(argv[1]); String s_debug_level(argv[1]);
config_data.debug_level = s_debug_level.toInt(); config_data.debug_level = s_debug_level.toInt();
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
SetScalesDebugLevel(config_data.debug_level);
pThis->printf("{ \"msg\": \"set_debug_level was successful\" }\n"); pThis->printf("{ \"msg\": \"set_debug_level was successful\" }\n");
@ -1273,7 +1201,7 @@ cCommandStream::CommandStatus cmdSetDebugLevel(cCommandStream * pThis, void *pCo
cCommandStream::CommandStatus cmdGetDebugLevel(cCommandStream *pThis, void *pContext, int argc, char **argv) cCommandStream::CommandStatus cmdGetDebugLevel(cCommandStream *pThis, void *pContext, int argc, char **argv)
{ {
gCatena.getFram()->saveField(cFramStorage::kAppConf, (const uint8_t *)&config_data, sizeof(config_data)); gCatena.getFram()->saveField(cFramStorage::kBme680Cal, (const uint8_t *)&config_data, sizeof(config_data));
pThis->printf("{ \"msg\": \"debug_level is %d\" }\n", config_data.debug_level); pThis->printf("{ \"msg\": \"debug_level is %d\" }\n", config_data.debug_level);

View File

@ -15,10 +15,10 @@ enum {
// add measurement and broadcast time, but we attempt // add measurement and broadcast time, but we attempt
// to compensate for the gross effects below. // to compensate for the gross effects below.
CATCFG_T_CYCLE = 6 * 60, // every 6 minutes CATCFG_T_CYCLE = 6 * 60, // every 6 minutes
//CATCFG_T_CYCLE = 30, // for Testing (Swisscom Compliance) //CATCFG_T_CYCLE = 30, // for Testing
CATCFG_T_CYCLE_TEST = 30, // every 30 seconds CATCFG_T_CYCLE_TEST = 30, // every 10 seconds
CATCFG_T_CYCLE_INITIAL = 30, // every 30 seconds initially CATCFG_T_CYCLE_INITIAL = 30, // every 30 seconds initially
CATCFG_INTERVAL_COUNT_INITIAL = 10, // repeat for 5 minutes CATCFG_INTERVAL_COUNT_INITIAL = 30, // repeat for 15 minutes
CATCFG_T_REBOOT = 30 * 24 * 60 * 60, // reboot every 30 days CATCFG_T_REBOOT = 30 * 24 * 60 * 60, // reboot every 30 days
}; };
@ -26,7 +26,7 @@ enum {
enum { enum {
CATCFG_T_WARMUP = 1, CATCFG_T_WARMUP = 1,
CATCFG_T_SETTLE = 5, CATCFG_T_SETTLE = 5,
CATCFG_T_OVERHEAD = (CATCFG_T_WARMUP + CATCFG_T_SETTLE + 4), CATCFG_T_OVERHEAD = (CATCFG_T_WARMUP + CATCFG_T_SETTLE),
CATCFG_T_MIN = CATCFG_T_OVERHEAD, CATCFG_T_MIN = CATCFG_T_OVERHEAD,
CATCFG_T_MAX = CATCFG_T_CYCLE < 60 * 60 ? 60 * 60 : CATCFG_T_CYCLE, // normally one hour max. CATCFG_T_MAX = CATCFG_T_CYCLE < 60 * 60 ? 60 * 60 : CATCFG_T_CYCLE, // normally one hour max.
CATCFG_INTERVAL_COUNT = 30, CATCFG_INTERVAL_COUNT = 30,
@ -56,7 +56,7 @@ enum {
| |
\****************************************************************************/ \****************************************************************************/
static const int32_t fwVersion = 20200804; static const int32_t fwVersion = 20200207;
static const byte INIT_PACKAGE_INTERVAL = 100; // send an init package every 100 packages; static const byte INIT_PACKAGE_INTERVAL = 100; // send an init package every 100 packages;
static const byte MAX_VALUES_TO_SEND = 8; static const byte MAX_VALUES_TO_SEND = 8;
@ -64,19 +64,16 @@ static const byte MAX_VALUES_TO_SEND = 8;
static const uint8_t LORA_DATA_VERSION = 1; static const uint8_t LORA_DATA_VERSION = 1;
static const uint8_t LORA_DATA_VERSION_FIRST_PACKAGE = 128; static const uint8_t LORA_DATA_VERSION_FIRST_PACKAGE = 128;
static const uint32_t PRESSURE_OFFSET = 825; static const uint32_t PRESSURE_OFFSET = 825;
static const uint16_t SEND_DIFF_THRESHOLD_5GRAMS = 20; // when weight changes by 100g, then send data static const uint16_t SEND_DIFF_THRESHOLD_5GRAMS = 10; // when weight value drops by 50g, then send data
static const long NOT_PLAUSIBLE_16 = 65535;
static const long NOT_PLAUSIBLE_32 = 2147483647;
static const byte INIT_PACKETS = 5;
// must be 64 bytes long (size of kAppConf) // must be 139 bytes long (size of kBme680Cal)
typedef struct { typedef struct {
long cal_w1_0; // 4 Bytes, Wert Waegezelle 1 ohne Gewicht, LONG_MIN when not connected long cal_w1_0; // 4 Bytes, Wert Waegezelle 1 ohne Gewicht
long cal_w2_0; // 4 Bytes, Wert Waegezelle 2 ohne Gewicht, LONG_MIN when not connected long cal_w2_0; // 4 Bytes, Wert Waegezelle 2 ohne Gewicht
float cal_w1_factor; // 4 Bytes, Kalibrationsfaktor Waegezelle 1 float cal_w1_factor; // 4 Bytes, Kalibrationsfaktor Waegezelle 1
float cal_w2_factor; // 4 Bytes, Kalibrationsfaktor Waegezelle 2 float cal_w2_factor; // 4 Bytes, Kalibrationsfaktor Waegezelle 2
byte debug_level; // 0 => no debugging, no led, 1 => infos, no led, 2 => infos, 3 => error, 4 => highest level byte debug_level; // 0 => no debugging, no led, 1 => infos, no led, 2 => infos, 3 => error, 4 => highest level
byte fill[47]; byte fill[122];
} __attribute__((packed)) CONFIG_data; } __attribute__((packed)) CONFIG_data;
typedef struct { typedef struct {

View File

@ -1,94 +0,0 @@
#define SAMPLES 10
#include <Q2HX711.h>
#ifndef _HELPER_H_
#include "helper.h"
#endif
// Scales
Q2HX711 hx711(A1, A0);
byte debug_level;
void SetScalesDebugLevel(byte dbg_level)
{
debug_level = dbg_level;
}
bool SetupScales(byte dbg_level)
{
debug_level = dbg_level;
if (debug_level > 0) {
gCatena.SafePrintf("setup_scales\n");
}
bool res;
res = true;
// Use D10 to regulate power
pinMode(D10, OUTPUT);
if (debug_level > 0) {
gCatena.SafePrintf("setup_scale done\n");
}
return res;
}
long ReadScale(char channel)
{
if (channel == 'B') {
hx711.setGain(128);
} else {
hx711.setGain(32);
}
delay(500);
long res;
int const num_scale_readings = 25; // number of instantaneous scale readings to calculate the median
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
long readings[num_scale_readings]; // create arry to hold readings
if (debug_level > 0) {
gCatena.SafePrintf("my_read_average, measurements:\n");
}
for (int i = 0; i < num_scale_readings; i++) {
readings[i] = hx711.read(); // fill the array with instantaneous readings from the scale
if (debug_level > 1) {
gCatena.SafePrintf("Reading %d: %d\n", i, readings[i]);
}
}
res = median(readings, num_scale_readings); // calculate median
if (debug_level > 0) {
gCatena.SafePrintf("Median of %d samples: %d\n", num_scale_readings, res);
float sdev;
sdev = stddev(readings, num_scale_readings);
gCatena.SafePrintf("Standard Deviation: %d.%03d\n", (int)sdev, (int)abs(sdev * 1000) % 1000);
}
return res;
}
void PowerdownScale()
{
// Disable Power
digitalWrite(D10, LOW);
}
void PowerupScale()
{
// Enable Power
digitalWrite(D10, HIGH);
// we wait 400ms (settling time according HX711 datasheet @ 10 SPS
delay(400);
if (debug_level > 0) {
gCatena.SafePrintf("setup_scale done\n");
}
}

View File

@ -1,174 +0,0 @@
#pragma once
#include <Wire.h>
#ifndef _HELPER_H_
#include "helper.h"
#endif
#include "SparkFun_Qwiic_Scale_NAU7802_Arduino_Library.h"
#define SAMPLES 5
byte debug_level;
//byte interruptPin = A0;
void SetScalesDebugLevel(byte dbg_level)
{
debug_level = dbg_level;
}
bool InitializeScales()
{
bool result;
result = myScale.reset(); //Reset all registers
result &= myScale.powerUp(); //Power on analog and digital sections of the scale
result &= myScale.setLDO(NAU7802_LDO_3V3); //Set LDO to 3.3V
result &= myScale.setGain(NAU7802_GAIN_128); //Set gain to 128
result &= myScale.setSampleRate(NAU7802_SPS_40); //Set samples per second to 40
result &= myScale.setRegister(NAU7802_ADC, 0x30); //Turn off CLK_CHP. From 9.1 power on sequencing.
result &= myScale.calibrateAFE(); //Re-cal analog front end when we change gain, sample rate, or channel
return result;
}
bool SetupScales(byte dbg_level)
{
debug_level = dbg_level;
if (debug_level > 0) {
gCatena.SafePrintf("SetupScales start\n");
}
// pinMode(interruptPin, INPUT);
if (!myScale.begin(Wire, false))
{
gCatena.SafePrintf("Scale not detected. Please check wiring. Freezing...\n");
return false;
}
gCatena.SafePrintf("Scale detected!\n");
bool result = InitializeScales();
if (debug_level > 0) {
gCatena.SafePrintf("SetupScales done, result: %d\n", result);
}
return result;
}
long ReadScale(char channel)
{
long res;
if (debug_level > 0) {
gCatena.SafePrintf("ReadScale Start, Channel %c\n", channel);
}
uint8_t channelNumber;
if (channel == 'B') {
channelNumber = NAU7802_CHANNEL_1;
} else {
channelNumber = NAU7802_CHANNEL_2;
}
unsigned long startTime = millis();
myScale.setChannel(channelNumber);
bool calibrate_success = myScale.calibrateAFE();
if (! calibrate_success) {
if (debug_level > 0) {
gCatena.SafePrintf("Error: Calibration not successful!\n");
}
}
if (myScale.available()) {
long dummy = myScale.getReading();
}
int const num_scale_readings = SAMPLES; // number of instantaneous scale readings to calculate the median
// we use the median, not the average, see https://community.particle.io/t/boron-gpio-provides-less-current-than-electrons-gpio/46647/13
long readings[num_scale_readings]; // create array to hold readings
for (int i = 0; i < num_scale_readings; i++) {
//while (digitalRead(interruptPin) == LOW) {
unsigned long mytimer = millis();
int timeouts = 0;
while (! myScale.available() && (timeouts < 3)) {
// we set a timeout of 10 seconds for the measurement...
if ((millis() - mytimer) > 10000) {
timeouts = timeouts + 1;
// Timeout reading scale...
Wire.endTransmission(true);
delay(50);
InitializeScales();
if (debug_level > 0) {
gCatena.SafePrintf("Timeout while reading scale...\n");
}
}
delay(50);
}
long reading;
if (myScale.available()) {
reading = myScale.getReading();
readings[i] = reading;
}
if (debug_level > 0) {
gCatena.SafePrintf("Reading: %d\n", reading);
}
delay(50);
}
unsigned long duration = millis() - startTime;
res = median(readings, num_scale_readings); // calculate median
if (debug_level > 0) {
gCatena.SafePrintf("Median of %d samples: %d\n", num_scale_readings, res);
float sdev;
sdev = stddev(readings, num_scale_readings);
float sdev_proc;
sdev_proc = 100 * (sdev / float(res));
gCatena.SafePrintf("Measurements: [");
for (int i = 0; i < num_scale_readings; i++) {
gCatena.SafePrintf("%d", readings[i]);
if (i < (SAMPLES - 1)) {
gCatena.SafePrintf(",");
}
}
gCatena.SafePrintf("]\n");
gCatena.SafePrintf("Standard Deviation: %d.%03d\n", (int)sdev, (int)abs(sdev * 1000) % 1000);
gCatena.SafePrintf("Standard Deviation / Median (Percent): %d.%03d\n", (int)sdev_proc, (int)abs(sdev_proc * 1000) % 1000);
gCatena.SafePrintf("Duration (ms): %d\n", duration);
}
if (debug_level > 0) {
gCatena.SafePrintf("ReadScale Done\n");
}
return res;
}
void PowerdownScale()
{
if (debug_level > 0) {
gCatena.SafePrintf("PowerdownScale Start\n");
}
myScale.powerDown();
if (debug_level > 0) {
gCatena.SafePrintf("PowerdownScale Done\n");
}
}
void PowerupScale()
{
if (debug_level > 0) {
gCatena.SafePrintf("PowerupScale Start\n");
}
InitializeScales();
if (debug_level > 0) {
gCatena.SafePrintf("PowerupScale Done\n");
}
}